Nuprl Lemma : set-add_wf
∀[a,b:coSet{i:l}].  (a + b ∈ coSet{i:l})
Proof
Definitions occuring in Statement : 
set-add: a + b
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
set-add: a + b
, 
mk-coset: mk-coset(T;f)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
subtype_coSet, 
coSet_subtype, 
mk-coset_wf, 
equal_wf, 
coSet_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis_subsumption, 
extract_by_obid, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
sqequalHypSubstitution, 
sqequalRule, 
productElimination, 
thin, 
isectElimination, 
unionEquality, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[a,b:coSet\{i:l\}].    (a  +  b  \mmember{}  coSet\{i:l\})
Date html generated:
2019_10_31-AM-06_33_20
Last ObjectModification:
2018_08_21-PM-02_01_17
Theory : constructive!set!theory
Home
Index