Nuprl Lemma : regextW_wf
∀[T:Type]. ∀[f:T ⟶ coSet{i:l}]. ∀[G:i:T ⟶ j:set-dom(f i) ⟶ T]. ∀[t:T].  (regextW(G;t) ∈ coW(T;x.set-dom(f x)))
Proof
Definitions occuring in Statement : 
regextW: regextW(G;t)
, 
set-dom: set-dom(s)
, 
coSet: coSet{i:l}
, 
coW: coW(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
regextW: regextW(G;t)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
Wsup: Wsup(a;b)
Lemmas referenced : 
fix_wf_coW_parameter, 
set-dom_wf, 
coSet_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
isect_memberEquality, 
dependent_pairEquality, 
functionEquality, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  coSet\{i:l\}].  \mforall{}[G:i:T  {}\mrightarrow{}  j:set-dom(f  i)  {}\mrightarrow{}  T].  \mforall{}[t:T].
    (regextW(G;t)  \mmember{}  coW(T;x.set-dom(f  x)))
Date html generated:
2019_10_31-AM-06_34_24
Last ObjectModification:
2018_08_04-PM-04_13_56
Theory : constructive!set!theory
Home
Index