Nuprl Lemma : regextW_wf

[T:Type]. ∀[f:T ⟶ coSet{i:l}]. ∀[G:i:T ⟶ j:set-dom(f i) ⟶ T]. ∀[t:T].  (regextW(G;t) ∈ coW(T;x.set-dom(f x)))


Proof




Definitions occuring in Statement :  regextW: regextW(G;t) set-dom: set-dom(s) coSet: coSet{i:l} coW: coW(A;a.B[a]) uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T regextW: regextW(G;t) so_lambda: λ2x.t[x] so_apply: x[s] Wsup: Wsup(a;b)
Lemmas referenced :  fix_wf_coW_parameter set-dom_wf coSet_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination because_Cache cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis isect_memberEquality dependent_pairEquality functionEquality universeEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  coSet\{i:l\}].  \mforall{}[G:i:T  {}\mrightarrow{}  j:set-dom(f  i)  {}\mrightarrow{}  T].  \mforall{}[t:T].
    (regextW(G;t)  \mmember{}  coW(T;x.set-dom(f  x)))



Date html generated: 2019_10_31-AM-06_34_24
Last ObjectModification: 2018_08_04-PM-04_13_56

Theory : constructive!set!theory


Home Index