Nuprl Lemma : seteq_equiv
EquivRel(coSet{i:l};s1,s2.seteq(s1;s2))
Proof
Definitions occuring in Statement : 
seteq: seteq(s1;s2)
, 
coSet: coSet{i:l}
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
Definitions unfolded in proof : 
trans: Trans(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
sym: Sym(T;x,y.E[x; y])
, 
cand: A c∧ B
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
refl: Refl(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
Lemmas referenced : 
seteq_transitivity, 
seteq_inversion, 
seteq_weakening, 
seteq_wf, 
coSet_wf
Rules used in proof : 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
independent_pairFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
EquivRel(coSet\{i:l\};s1,s2.seteq(s1;s2))
Date html generated:
2018_07_29-AM-09_51_24
Last ObjectModification:
2018_07_11-PM-00_17_16
Theory : constructive!set!theory
Home
Index