Nuprl Lemma : singlevalued-graph_wf

A:coSet{i:l}. ∀B:{a:coSet{i:l}| (a ∈ A)}  ⟶ coSet{i:l}. ∀x:coSet{i:l}.  (singlevalued-graph(A;a.B[a];x) ∈ ℙ)


Proof




Definitions occuring in Statement :  singlevalued-graph: singlevalued-graph(A;a.B[a];grph) setmem: (x ∈ s) coSet: coSet{i:l} prop: so_apply: x[s] all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  prop: implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] singlevalued-graph: singlevalued-graph(A;a.B[a];grph) member: t ∈ T all: x:A. B[x]
Lemmas referenced :  coSet_wf seteq_wf orderedpairset_wf setmem_wf allsetmem_wf
Rules used in proof :  cumulativity setEquality because_Cache hypothesis rename setElimination functionEquality applyEquality lambdaEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction sqequalRule cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}A:coSet\{i:l\}.  \mforall{}B:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  coSet\{i:l\}.  \mforall{}x:coSet\{i:l\}.
    (singlevalued-graph(A;a.B[a];x)  \mmember{}  \mBbbP{})



Date html generated: 2018_07_29-AM-10_04_50
Last ObjectModification: 2018_07_18-PM-03_32_07

Theory : constructive!set!theory


Home Index