Nuprl Lemma : singlevalued-graph_wf
∀A:coSet{i:l}. ∀B:{a:coSet{i:l}| (a ∈ A)}  ⟶ coSet{i:l}. ∀x:coSet{i:l}.  (singlevalued-graph(A;a.B[a];x) ∈ ℙ)
Proof
Definitions occuring in Statement : 
singlevalued-graph: singlevalued-graph(A;a.B[a];grph)
, 
setmem: (x ∈ s)
, 
coSet: coSet{i:l}
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
singlevalued-graph: singlevalued-graph(A;a.B[a];grph)
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
coSet_wf, 
seteq_wf, 
orderedpairset_wf, 
setmem_wf, 
allsetmem_wf
Rules used in proof : 
cumulativity, 
setEquality, 
because_Cache, 
hypothesis, 
rename, 
setElimination, 
functionEquality, 
applyEquality, 
lambdaEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
sqequalRule, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}A:coSet\{i:l\}.  \mforall{}B:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  coSet\{i:l\}.  \mforall{}x:coSet\{i:l\}.
    (singlevalued-graph(A;a.B[a];x)  \mmember{}  \mBbbP{})
Date html generated:
2018_07_29-AM-10_04_50
Last ObjectModification:
2018_07_18-PM-03_32_07
Theory : constructive!set!theory
Home
Index