Step * 1 3 1 1 of Lemma subset-regext


1. Type
2. A ⟶ Set{i:l}
3. ∀x:coSet{i:l}. ((x ∈ a"(A))  (x ⊆ a"(A)))
4. Type
5. T ⟶ Set{i:l}
6. ∀t:T. ((f[t] ∈ a"(A))  (f[t] ∈ regext(a"(A))))
7. A
8. seteq(f"(T);a t)
9. (f"(T) ⊆ a"(A))
10. Set{i:l}
11. (x ∈ f"(T))
⊢ ∃y:Set{i:l}. ((y ∈ regext(a"(A))) ∧ seteq(x;y))
BY
SetMemDef (-1) }

1
1. Type
2. A ⟶ Set{i:l}
3. ∀x:coSet{i:l}. ((x ∈ a"(A))  (x ⊆ a"(A)))
4. Type
5. T ⟶ Set{i:l}
6. ∀t:T. ((f[t] ∈ a"(A))  (f[t] ∈ regext(a"(A))))
7. A
8. seteq(f"(T);a t)
9. (f"(T) ⊆ a"(A))
10. Set{i:l}
11. T
12. seteq(x;f b)
⊢ ∃y:Set{i:l}. ((y ∈ regext(a"(A))) ∧ seteq(x;y))


Latex:


Latex:

1.  A  :  Type
2.  a  :  A  {}\mrightarrow{}  Set\{i:l\}
3.  \mforall{}x:coSet\{i:l\}.  ((x  \mmember{}  a"(A))  {}\mRightarrow{}  (x  \msubseteq{}  a"(A)))
4.  T  :  Type
5.  f  :  T  {}\mrightarrow{}  Set\{i:l\}
6.  \mforall{}t:T.  ((f[t]  \mmember{}  a"(A))  {}\mRightarrow{}  (f[t]  \mmember{}  regext(a"(A))))
7.  t  :  A
8.  seteq(f"(T);a  t)
9.  (f"(T)  \msubseteq{}  a"(A))
10.  x  :  Set\{i:l\}
11.  (x  \mmember{}  f"(T))
\mvdash{}  \mexists{}y:Set\{i:l\}.  ((y  \mmember{}  regext(a"(A)))  \mwedge{}  seteq(x;y))


By


Latex:
SetMemDef  (-1)




Home Index