Nuprl Lemma : transmem_wf

[x,y:coSet{i:l}].  ((x ∈∈ y) ∈ ℙ')


Proof




Definitions occuring in Statement :  transmem: (x ∈∈ y) coSet: coSet{i:l} uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  prop: infix_ap: y transmem: (x ∈∈ y) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  setmem_wf coSet_wf transitive-closure_wf
Rules used in proof :  because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality hypothesisEquality cumulativity lambdaEquality hypothesis isectElimination sqequalHypSubstitution extract_by_obid instantiate thin applyEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[x,y:coSet\{i:l\}].    ((x  \mmember{}\mmember{}  y)  \mmember{}  \mBbbP{}')



Date html generated: 2018_07_29-AM-10_03_21
Last ObjectModification: 2018_07_18-PM-11_36_14

Theory : constructive!set!theory


Home Index