Nuprl Lemma : transmem_wf
∀[x,y:coSet{i:l}].  ((x ∈∈ y) ∈ ℙ')
Proof
Definitions occuring in Statement : 
transmem: (x ∈∈ y)
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
prop: ℙ
, 
infix_ap: x f y
, 
transmem: (x ∈∈ y)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
setmem_wf, 
coSet_wf, 
transitive-closure_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesisEquality, 
cumulativity, 
lambdaEquality, 
hypothesis, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
applyEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[x,y:coSet\{i:l\}].    ((x  \mmember{}\mmember{}  y)  \mmember{}  \mBbbP{}')
Date html generated:
2018_07_29-AM-10_03_21
Last ObjectModification:
2018_07_18-PM-11_36_14
Theory : constructive!set!theory
Home
Index