Step
*
2
1
2
of Lemma
Kan_sigma_filler_wf
1. X : CubicalSet
2. A : {X ⊢ _(Kan)}
3. B : {X.Kan-type(A) ⊢ _(Kan)}
4. I : Cname List
5. alpha : X(I)
6. J : nameset(I) List
7. x : nameset(I)
8. i : ℕ2
9. bx : A-open-box(X;Σ Kan-type(A) Kan-type(B);I;alpha;J;x;i)
10. filler(x;i;sigma-box-fst(bx)) ∈ Kan-type(A)(alpha)
11. fills-A-open-box(X;Kan-type(A);I;alpha;sigma-box-fst(bx);filler(x;i;sigma-box-fst(bx)))
12. filler(x;i;sigma-box-snd(bx)) ∈ Kan-type(B)((alpha;filler(x;i;sigma-box-fst(bx))))
13. fills-A-open-box(X.Kan-type(A);Kan-type(B);I;(alpha;
filler(x;i;sigma-box-fst(bx)));sigma-box-snd(bx);filler(x;i;...))
14. j : ℕ||bx||
⊢ is-A-face(X;Σ Kan-type(A) Kan-type(B);I;alpha;(λI,alpha,J,x,i,bx. let cubeA = filler(x;i;sigma-box-fst(bx)) in
let cubeB = filler(x;i;sigma-box-snd(bx)) in
<cubeA, cubeB>)
I
alpha
J
x
i
bx;bx[j])
BY
{ (MoveToConcl (-2)
THEN MoveToConcl (-3)
THEN RepUR ``let`` 0
THEN (GenConclTerm ⌜filler(x;i;sigma-box-fst(bx))⌝⋅ THENA Auto)
THEN Thin (-1)
THEN RenameVar `cubeA' (-1)
THEN (Assert l_subset(Cname;J;I) BY
(D 9 THEN Unhide THEN Auto))
THEN (D 0 THENA Auto)
THEN (GenConclTerm ⌜filler(x;i;sigma-box-snd(bx))⌝⋅ THENA Auto)
THEN Thin (-1)
THEN RenameVar `cubeB' (-1)
THEN Auto
THEN D -2
THEN Thin (-2)) }
1
1. X : CubicalSet
2. A : {X ⊢ _(Kan)}
3. B : {X.Kan-type(A) ⊢ _(Kan)}
4. I : Cname List
5. alpha : X(I)
6. J : nameset(I) List
7. x : nameset(I)
8. i : ℕ2
9. bx : A-open-box(X;Σ Kan-type(A) Kan-type(B);I;alpha;J;x;i)
10. filler(x;i;sigma-box-fst(bx)) ∈ Kan-type(A)(alpha)
11. filler(x;i;sigma-box-snd(bx)) ∈ Kan-type(B)((alpha;filler(x;i;sigma-box-fst(bx))))
12. j : ℕ||bx||
13. cubeA : Kan-type(A)(alpha)
14. l_subset(Cname;J;I)
15. fills-A-open-box(X;Kan-type(A);I;alpha;sigma-box-fst(bx);cubeA)
16. cubeB : Kan-type(B)((alpha;cubeA))
17. fills-A-open-box(X.Kan-type(A);Kan-type(B);I;(alpha;cubeA);sigma-box-snd(bx);cubeB)
⊢ is-A-face(X;Σ Kan-type(A) Kan-type(B);I;alpha;<cubeA, cubeB>;bx[j])
Latex:
Latex:
1. X : CubicalSet
2. A : \{X \mvdash{} \_(Kan)\}
3. B : \{X.Kan-type(A) \mvdash{} \_(Kan)\}
4. I : Cname List
5. alpha : X(I)
6. J : nameset(I) List
7. x : nameset(I)
8. i : \mBbbN{}2
9. bx : A-open-box(X;\mSigma{} Kan-type(A) Kan-type(B);I;alpha;J;x;i)
10. filler(x;i;sigma-box-fst(bx)) \mmember{} Kan-type(A)(alpha)
11. fills-A-open-box(X;Kan-type(A);I;alpha;sigma-box-fst(bx);filler(x;i;sigma-box-fst(bx)))
12. filler(x;i;sigma-box-snd(bx)) \mmember{} Kan-type(B)((alpha;filler(x;i;sigma-box-fst(bx))))
13. fills-A-open-box(X.Kan-type(A);Kan-type(B);I;(alpha;
filler(x;i;sigma-box-fst(bx)));...;...)
14. j : \mBbbN{}||bx||
\mvdash{} is-A-face(X;\mSigma{} Kan-type(A) Kan-type(B);I;alpha;(\mlambda{}I,alpha,J,x,i,bx.
let cubeA = filler(x;i;...) in
let cubeB = filler(x;i;...) in
<cubeA, cubeB>)
I
alpha
J
x
i
bx;bx[j])
By
Latex:
(MoveToConcl (-2)
THEN MoveToConcl (-3)
THEN RepUR ``let`` 0
THEN (GenConclTerm \mkleeneopen{}filler(x;i;sigma-box-fst(bx))\mkleeneclose{}\mcdot{} THENA Auto)
THEN Thin (-1)
THEN RenameVar `cubeA' (-1)
THEN (Assert l\_subset(Cname;J;I) BY
(D 9 THEN Unhide THEN Auto))
THEN (D 0 THENA Auto)
THEN (GenConclTerm \mkleeneopen{}filler(x;i;sigma-box-snd(bx))\mkleeneclose{}\mcdot{} THENA Auto)
THEN Thin (-1)
THEN RenameVar `cubeB' (-1)
THEN Auto
THEN D -2
THEN Thin (-2))
Home
Index