Nuprl Lemma : cube-set-map-is

[A,B:CubicalSet].
  (A ⟶ {trans:I:(Cname List) ⟶ A(I) ⟶ B(I)| 
             ∀I,J:Cname List. ∀g:name-morph(I;J).  ((λs.g(trans s)) s.(trans g(s))) ∈ (A(I) ⟶ B(J)))} )


Proof




Definitions occuring in Statement :  cube-set-restriction: f(s) I-cube: X(I) cube-set-map: A ⟶ B cubical-set: CubicalSet name-morph: name-morph(I;J) coordinate_name: Cname list: List uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cube-set-restriction: f(s) I-cube: X(I) cube-set-map: A ⟶ B type-cat: TypeCat name-cat: NameCat nat-trans: nat-trans(C;D;F;G) functor-arrow: functor-arrow(F) compose: g cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) pi1: fst(t) pi2: snd(t)
Lemmas referenced :  cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis sqequalAxiom lemma_by_obid sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[A,B:CubicalSet].
    (A  {}\mrightarrow{}  B  \msim{}  \{trans:I:(Cname  List)  {}\mrightarrow{}  A(I)  {}\mrightarrow{}  B(I)| 
                          \mforall{}I,J:Cname  List.  \mforall{}g:name-morph(I;J).    ((\mlambda{}s.g(trans  I  s))  =  (\mlambda{}s.(trans  J  g(s))))\}  )



Date html generated: 2016_06_16-PM-05_37_40
Last ObjectModification: 2015_12_28-PM-04_37_07

Theory : cubical!sets


Home Index