Step * 1 1 of Lemma extend-name-morph-iota


1. Cname List
2. Cname List
3. name-morph(I;K)
4. Cname
5. Cname
6. ¬(x ∈ K)
7. ¬(z ∈ I)
8. x1 nameset(I)
⊢ if isname(x1) then if eq-cname(x1;z) then else x1 fi  else x1 fi 
if isname(f x1) then x1 else x1 fi 
∈ extd-nameset([x K])
BY
((RWO  "isname-nameset" THENA Auto) THEN Reduce THEN (BoolCase ⌜eq-cname(x1;z)⌝⋅ THENA Auto)) }

1
1. Cname List
2. Cname List
3. name-morph(I;K)
4. Cname
5. Cname
6. ¬(x ∈ K)
7. ¬(z ∈ I)
8. x1 nameset(I)
9. x1 z ∈ Cname
⊢ if isname(f x1) then x1 else x1 fi  ∈ extd-nameset([x K])

2
1. Cname List
2. Cname List
3. name-morph(I;K)
4. Cname
5. Cname
6. ¬(x ∈ K)
7. ¬(z ∈ I)
8. x1 nameset(I)
9. ¬(x1 z ∈ Cname)
⊢ (f x1) if isname(f x1) then x1 else x1 fi  ∈ extd-nameset([x K])


Latex:


Latex:

1.  I  :  Cname  List
2.  K  :  Cname  List
3.  f  :  name-morph(I;K)
4.  z  :  Cname
5.  x  :  Cname
6.  \mneg{}(x  \mmember{}  K)
7.  \mneg{}(z  \mmember{}  I)
8.  x1  :  nameset(I)
\mvdash{}  if  isname(x1)  then  if  eq-cname(x1;z)  then  x  else  f  x1  fi    else  x1  fi 
=  if  isname(f  x1)  then  f  x1  else  f  x1  fi 


By


Latex:
((RWO    "isname-nameset"  0  THENA  Auto)  THEN  Reduce  0  THEN  (BoolCase  \mkleeneopen{}eq-cname(x1;z)\mkleeneclose{}\mcdot{}  THENA  Auto))




Home Index