Step
*
of Lemma
poset-cat-ob-cases
∀I:Cname List. ∀c1,c2:cat-ob(poset-cat(I)). ((c1 = c2 ∈ cat-ob(poset-cat(I))) ∨ (∃y:nameset(I). c1 y ≠ c2 y))
BY
{ ((UnivCD THENA Auto)
THEN All
(RepUR ``cat-ob poset-cat``)⋅
THEN (Assert I ∈ nameset(I) List BY
(Unfold `nameset` 0 THEN Auto))
THEN (Decide ⌜(∃y∈I. c1 y ≠ c2 y)⌝⋅ THENA Auto)) }
1
1. I : Cname List
2. c1 : name-morph(I;[])
3. c2 : name-morph(I;[])
4. I ∈ nameset(I) List
5. (∃y∈I. c1 y ≠ c2 y)
⊢ (c1 = c2 ∈ name-morph(I;[])) ∨ (∃y:nameset(I). c1 y ≠ c2 y)
2
1. I : Cname List
2. c1 : name-morph(I;[])
3. c2 : name-morph(I;[])
4. I ∈ nameset(I) List
5. ¬(∃y∈I. c1 y ≠ c2 y)
⊢ (c1 = c2 ∈ name-morph(I;[])) ∨ (∃y:nameset(I). c1 y ≠ c2 y)
Latex:
Latex:
\mforall{}I:Cname List. \mforall{}c1,c2:cat-ob(poset-cat(I)). ((c1 = c2) \mvee{} (\mexists{}y:nameset(I). c1 y \mneq{} c2 y))
By
Latex:
((UnivCD THENA Auto)
THEN All
(RepUR ``cat-ob poset-cat``)\mcdot{}
THEN (Assert I \mmember{} nameset(I) List BY
(Unfold `nameset` 0 THEN Auto))
THEN (Decide \mkleeneopen{}(\mexists{}y\mmember{}I. c1 y \mneq{} c2 y)\mkleeneclose{}\mcdot{} THENA Auto))
Home
Index