Nuprl Lemma : poset-cat-ob-cases
∀I:Cname List. ∀c1,c2:cat-ob(poset-cat(I)).  ((c1 = c2 ∈ cat-ob(poset-cat(I))) ∨ (∃y:nameset(I). c1 y ≠ c2 y))
Proof
Definitions occuring in Statement : 
poset-cat: poset-cat(J)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
cat-ob: cat-ob(C)
, 
list: T List
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
nequal: a ≠ b ∈ T 
, 
or: P ∨ Q
, 
apply: f a
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
poset-cat: poset-cat(J)
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
nameset: nameset(L)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
name-morph: name-morph(I;J)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
nequal: a ≠ b ∈ T 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
, 
prop: ℙ
, 
l_exists: (∃x∈L. P[x])
, 
exists: ∃x:A. B[x]
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
sq_type: SQType(T)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
l_member: (x ∈ l)
, 
cand: A c∧ B
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
nat: ℕ
, 
le: A ≤ B
, 
sq_stable: SqStable(P)
Lemmas referenced : 
list-subtype, 
coordinate_name_wf, 
cat-ob_wf, 
poset-cat_wf, 
list_wf, 
nameset_wf, 
nequal_wf, 
extd-nameset_subtype_int, 
nil_wf, 
equal_wf, 
decidable__l_exists_better-extract, 
decidable__not, 
decidable__equal_int, 
name-morph_wf, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
all_wf, 
assert_wf, 
isname_wf, 
extd-nameset_wf, 
exists_wf, 
subtype_base_sq, 
int_seg_wf, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
nsub2_subtype_extd-nameset, 
decidable__equal_int_seg, 
extd-nameset-nil, 
l_exists_iff, 
l_member_wf, 
le_wf, 
select_member, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-base, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
intEquality, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
unionElimination, 
inrFormation, 
productElimination, 
dependent_pairFormation, 
independent_isectElimination, 
natural_numberEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
inlFormation, 
dependent_set_memberEquality, 
functionEquality, 
functionExtensionality, 
instantiate, 
cumulativity, 
setEquality, 
imageMemberEquality, 
baseClosed, 
productEquality
Latex:
\mforall{}I:Cname  List.  \mforall{}c1,c2:cat-ob(poset-cat(I)).    ((c1  =  c2)  \mvee{}  (\mexists{}y:nameset(I).  c1  y  \mneq{}  c2  y))
Date html generated:
2017_10_05-AM-10_28_03
Last ObjectModification:
2017_07_28-AM-11_23_28
Theory : cubical!sets
Home
Index