Step
*
1
of Lemma
poset-functors-equal
1. C : SmallCategory
2. I : Cname List
3. F : Functor(poset-cat(I);C)
4. G : Functor(poset-cat(I);C)
⊢ (F = G ∈ Functor(poset-cat(I);C))
⇒ ((∀f:name-morph(I;[]). ((ob(F) f) = (ob(G) f) ∈ cat-ob(C)))
∧ (∀x:nameset(I). ∀f:{f:name-morph(I;[])| (f x) = 0 ∈ ℕ2} .
((arrow(F) f flip(f;x) (λx.Ax)) = (arrow(G) f flip(f;x) (λx.Ax)) ∈ (cat-arrow(C) (ob(F) f) (ob(F) flip(f;x))))))
BY
{ ((D 0 THENA Auto) THEN BetterSplitAndConcl) }
1
1. C : SmallCategory
2. I : Cname List
3. F : Functor(poset-cat(I);C)
4. G : Functor(poset-cat(I);C)
5. F = G ∈ Functor(poset-cat(I);C)
⊢ ∀f:name-morph(I;[]). ((ob(F) f) = (ob(G) f) ∈ cat-ob(C))
2
1. C : SmallCategory
2. I : Cname List
3. F : Functor(poset-cat(I);C)
4. G : Functor(poset-cat(I);C)
5. F = G ∈ Functor(poset-cat(I);C)
6. ∀f:name-morph(I;[]). ((ob(F) f) = (ob(G) f) ∈ cat-ob(C))
⊢ ∀x:nameset(I). ∀f:{f:name-morph(I;[])| (f x) = 0 ∈ ℕ2} .
((arrow(F) f flip(f;x) (λx.Ax)) = (arrow(G) f flip(f;x) (λx.Ax)) ∈ (cat-arrow(C) (ob(F) f) (ob(F) flip(f;x))))
Latex:
Latex:
1. C : SmallCategory
2. I : Cname List
3. F : Functor(poset-cat(I);C)
4. G : Functor(poset-cat(I);C)
\mvdash{} (F = G)
{}\mRightarrow{} ((\mforall{}f:name-morph(I;[]). ((ob(F) f) = (ob(G) f)))
\mwedge{} (\mforall{}x:nameset(I). \mforall{}f:\{f:name-morph(I;[])| (f x) = 0\} .
((arrow(F) f flip(f;x) (\mlambda{}x.Ax)) = (arrow(G) f flip(f;x) (\mlambda{}x.Ax)))))
By
Latex:
((D 0 THENA Auto) THEN BetterSplitAndConcl)
Home
Index