Nuprl Lemma : unit-cube-I-cube
∀[I,L:Top].  (unit-cube(I)(L) ~ name-morph(I;L))
Proof
Definitions occuring in Statement : 
unit-cube: unit-cube(I)
, 
I-cube: X(I)
, 
name-morph: name-morph(I;J)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
unit-cube: unit-cube(I)
, 
I-cube: X(I)
, 
functor-ob: functor-ob(F)
, 
pi1: fst(t)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[I,L:Top].    (unit-cube(I)(L)  \msim{}  name-morph(I;L))
Date html generated:
2016_06_16-PM-05_37_50
Last ObjectModification:
2015_12_28-PM-04_36_59
Theory : cubical!sets
Home
Index