Nuprl Lemma : unit-cube-I-cube
∀[I,L:Top]. (unit-cube(I)(L) ~ name-morph(I;L))
Proof
Definitions occuring in Statement :
unit-cube: unit-cube(I)
,
I-cube: X(I)
,
name-morph: name-morph(I;J)
,
uall: ∀[x:A]. B[x]
,
top: Top
,
sqequal: s ~ t
Definitions unfolded in proof :
unit-cube: unit-cube(I)
,
I-cube: X(I)
,
functor-ob: functor-ob(F)
,
pi1: fst(t)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Lemmas referenced :
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
sqequalAxiom,
lemma_by_obid,
hypothesis,
sqequalHypSubstitution,
isect_memberEquality,
isectElimination,
thin,
hypothesisEquality,
because_Cache
Latex:
\mforall{}[I,L:Top]. (unit-cube(I)(L) \msim{} name-morph(I;L))
Date html generated:
2016_06_16-PM-05_37_50
Last ObjectModification:
2015_12_28-PM-04_36_59
Theory : cubical!sets
Home
Index