Nuprl Lemma : unit-cube-I-cube

[I,L:Top].  (unit-cube(I)(L) name-morph(I;L))


Proof




Definitions occuring in Statement :  unit-cube: unit-cube(I) I-cube: X(I) name-morph: name-morph(I;J) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  unit-cube: unit-cube(I) I-cube: X(I) functor-ob: functor-ob(F) pi1: fst(t) uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalAxiom lemma_by_obid hypothesis sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[I,L:Top].    (unit-cube(I)(L)  \msim{}  name-morph(I;L))



Date html generated: 2016_06_16-PM-05_37_50
Last ObjectModification: 2015_12_28-PM-04_36_59

Theory : cubical!sets


Home Index