Nuprl Lemma : cc-fst+-0-type
∀[G:j⊢]. ∀[A:{G.𝕀 ⊢ _}].  (((A)[0(𝕀)])p = ((A)p+)[0(𝕀)] ∈ {G.𝕀 ⊢ _})
Proof
Definitions occuring in Statement : 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm+: tau+
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
Lemmas referenced : 
cubical-type_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
cubical_set_wf, 
csm-id-adjoin_wf-interval-0, 
cc-fst_wf, 
csm-comp-type, 
cc-fst+-comp-0, 
csm-ap-type_wf, 
squash_wf, 
true_wf, 
cube_set_map_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
universeIsType, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
Error :memTop, 
equalitySymmetry, 
natural_numberEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
inhabitedIsType, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G.\mBbbI{}  \mvdash{}  \_\}].    (((A)[0(\mBbbI{})])p  =  ((A)p+)[0(\mBbbI{})])
Date html generated:
2020_05_20-PM-04_43_36
Last ObjectModification:
2020_04_10-AM-11_25_11
Theory : cubical!type!theory
Home
Index