Nuprl Lemma : cc-fst+-0-type

[G:j⊢]. ∀[A:{G.𝕀 ⊢ _}].  (((A)[0(𝕀)])p ((A)p+)[0(𝕀)] ∈ {G.𝕀 ⊢ _})


Proof




Definitions occuring in Statement :  interval-0: 0(𝕀) interval-type: 𝕀 csm+: tau+ csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B true: True squash: T prop:
Lemmas referenced :  cubical-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf cubical_set_wf csm-id-adjoin_wf-interval-0 cc-fst_wf csm-comp-type cc-fst+-comp-0 csm-ap-type_wf squash_wf true_wf cube_set_map_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt universeIsType cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule Error :memTop,  equalitySymmetry natural_numberEquality lambdaEquality_alt imageElimination equalityTransitivity inhabitedIsType imageMemberEquality baseClosed

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G.\mBbbI{}  \mvdash{}  \_\}].    (((A)[0(\mBbbI{})])p  =  ((A)p+)[0(\mBbbI{})])



Date html generated: 2020_05_20-PM-04_43_36
Last ObjectModification: 2020_04_10-AM-11_25_11

Theory : cubical!type!theory


Home Index