Nuprl Lemma : contractibilty-of-singleton

X:j⊢. ∀A:{X ⊢ _}. ∀a:{X ⊢ _:A}.  {X ⊢ _:Contractible(Singleton(a))}


Proof




Definitions occuring in Statement :  singleton-type: Singleton(a) contractible-type: Contractible(A) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B
Lemmas referenced :  singleton-contr_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-term_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule universeIsType

Latex:
\mforall{}X:j\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a:\{X  \mvdash{}  \_:A\}.    \{X  \mvdash{}  \_:Contractible(Singleton(a))\}



Date html generated: 2020_05_20-PM-03_30_24
Last ObjectModification: 2020_04_06-PM-06_52_32

Theory : cubical!type!theory


Home Index