Nuprl Lemma : contractibilty-of-singleton
∀X:j⊢. ∀A:{X ⊢ _}. ∀a:{X ⊢ _:A}.  {X ⊢ _:Contractible(Singleton(a))}
Proof
Definitions occuring in Statement : 
singleton-type: Singleton(a)
, 
contractible-type: Contractible(A)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
singleton-contr_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical-term_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
universeIsType
Latex:
\mforall{}X:j\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a:\{X  \mvdash{}  \_:A\}.    \{X  \mvdash{}  \_:Contractible(Singleton(a))\}
Date html generated:
2020_05_20-PM-03_30_24
Last ObjectModification:
2020_04_06-PM-06_52_32
Theory : cubical!type!theory
Home
Index