Nuprl Lemma : contractible-comp-exists
∀X:j⊢. ∀A:{X ⊢ _}.  (X ⊢ CompOp(A) 
⇒ X ⊢ CompOp(Contractible(A)))
Proof
Definitions occuring in Statement : 
composition-op: Gamma ⊢ CompOp(A)
, 
contractible-type: Contractible(A)
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
contractible-comp_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
rename, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
universeIsType
Latex:
\mforall{}X:j\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.    (X  \mvdash{}  CompOp(A)  {}\mRightarrow{}  X  \mvdash{}  CompOp(Contractible(A)))
Date html generated:
2020_05_20-PM-05_14_31
Last ObjectModification:
2020_04_10-AM-11_46_21
Theory : cubical!type!theory
Home
Index