Nuprl Lemma : contractible-comp-exists

X:j⊢. ∀A:{X ⊢ _}.  (X ⊢ CompOp(A)  X ⊢ CompOp(Contractible(A)))


Proof




Definitions occuring in Statement :  composition-op: Gamma ⊢ CompOp(A) contractible-type: Contractible(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B
Lemmas referenced :  contractible-comp_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j composition-op_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt rename introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule universeIsType

Latex:
\mforall{}X:j\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.    (X  \mvdash{}  CompOp(A)  {}\mRightarrow{}  X  \mvdash{}  CompOp(Contractible(A)))



Date html generated: 2020_05_20-PM-05_14_31
Last ObjectModification: 2020_04_10-AM-11_46_21

Theory : cubical!type!theory


Home Index