Nuprl Lemma : contractible-comp_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[cA:X ⊢ CompOp(A)].  (contractible-comp(X;A;cA) ∈ X ⊢ CompOp(Contractible(A)))


Proof




Definitions occuring in Statement :  contractible-comp: contractible-comp(X;A;cA) composition-op: Gamma ⊢ CompOp(A) contractible-type: Contractible(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T contractible-comp: contractible-comp(X;A;cA) all: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  comp-fun-to-comp-op_wf contractible-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j contractible_comp_wf comp-op-to-comp-fun_wf2 composition-op_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality isectElimination applyEquality hypothesis because_Cache axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[cA:X  \mvdash{}  CompOp(A)].
    (contractible-comp(X;A;cA)  \mmember{}  X  \mvdash{}  CompOp(Contractible(A)))



Date html generated: 2020_05_20-PM-05_14_17
Last ObjectModification: 2020_04_10-AM-11_45_59

Theory : cubical!type!theory


Home Index