Nuprl Lemma : contractible-comp_wf
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[cA:X ⊢ CompOp(A)].  (contractible-comp(X;A;cA) ∈ X ⊢ CompOp(Contractible(A)))
Proof
Definitions occuring in Statement : 
contractible-comp: contractible-comp(X;A;cA)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
contractible-type: Contractible(A)
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
contractible-comp: contractible-comp(X;A;cA)
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
comp-fun-to-comp-op_wf, 
contractible-type_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
contractible_comp_wf, 
comp-op-to-comp-fun_wf2, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
applyEquality, 
hypothesis, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[cA:X  \mvdash{}  CompOp(A)].
    (contractible-comp(X;A;cA)  \mmember{}  X  \mvdash{}  CompOp(Contractible(A)))
Date html generated:
2020_05_20-PM-05_14_17
Last ObjectModification:
2020_04_10-AM-11_45_59
Theory : cubical!type!theory
Home
Index