Nuprl Lemma : csm-case-endpoints
∀[a,b,r,s:Top].  (([r=0 ⊢→ a; r=1 ⊢→ b])s ~ [(r)s=0 ⊢→ (a)s; (r)s=1 ⊢→ (b)s])
Proof
Definitions occuring in Statement : 
case-endpoints: [r=0 ⊢→ a; r=1 ⊢→ b]
, 
csm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
case-endpoints: [r=0 ⊢→ a; r=1 ⊢→ b]
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
top_wf, 
csm-case-term, 
csm-face-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
because_Cache, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
thin
Latex:
\mforall{}[a,b,r,s:Top].    (([r=0  \mvdash{}\mrightarrow{}  a;  r=1  \mvdash{}\mrightarrow{}  b])s  \msim{}  [(r)s=0  \mvdash{}\mrightarrow{}  (a)s;  (r)s=1  \mvdash{}\mrightarrow{}  (b)s])
Date html generated:
2018_05_23-AM-10_19_30
Last ObjectModification:
2018_05_20-PM-07_20_14
Theory : cubical!type!theory
Home
Index