Nuprl Lemma : csm-cubical-pi-family

X,Delta:j⊢. ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}. ∀s:Delta j⟶ X. ∀I:fset(ℕ). ∀a:Delta(I).
  (cubical-pi-family(X;A;B;I;(s)a) cubical-pi-family(Delta;(A)s;(B)(s p;q);I;a) ∈ Type)


Proof




Definitions occuring in Statement :  cubical-pi-family: cubical-pi-family(X;A;B;I;a) csm-adjoin: (s;u) cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} csm-comp: F csm-ap: (s)x cube_set_map: A ⟶ B I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cubical_set: CubicalSet uall: [x:A]. B[x] cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) cube_set_map: A ⟶ B cube-cat: CubeCat cubical-pi-family: cubical-pi-family(X;A;B;I;a) presheaf-pi-family: presheaf-pi-family(C; X; A; B; I; a) csm-ap: (s)x pscm-ap: (s)x cc-adjoin-cube: (v;u) psc-adjoin-set: (v;u) csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-adjoin: (s;u) pscm-adjoin: (s;u) csm-comp: F pscm-comp: F cc-fst: p psc-fst: p cc-snd: q psc-snd: q
Lemmas referenced :  pscm-presheaf-pi-family cube-cat_wf cubical-type-sq-presheaf-type cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis sqequalRule isectElimination Error :memTop

Latex:
\mforall{}X,Delta:j\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.  \mforall{}s:Delta  j{}\mrightarrow{}  X.  \mforall{}I:fset(\mBbbN{}).  \mforall{}a:Delta(I).
    (cubical-pi-family(X;A;B;I;(s)a)  =  cubical-pi-family(Delta;(A)s;(B)(s  o  p;q);I;a))



Date html generated: 2020_05_20-PM-01_59_26
Last ObjectModification: 2020_04_03-PM-08_32_47

Theory : cubical!type!theory


Home Index