Nuprl Lemma : pscm-presheaf-pi-family

C:SmallCategory. ∀X,Delta:ps_context{j:l}(C). ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}. ∀s:psc_map{j:l}(C; Delta; X). ∀I:cat-ob(C).
a:Delta(I).
  (presheaf-pi-family(C; X; A; B; I; (s)a) presheaf-pi-family(C; Delta; (A)s; (B)(s p;q); I; a) ∈ Type)


Proof




Definitions occuring in Statement :  presheaf-pi-family: presheaf-pi-family(C; X; A; B; I; a) pscm-adjoin: (s;u) psc-snd: q psc-fst: p psc-adjoin: X.A pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} pscm-comp: F pscm-ap: (s)x psc_map: A ⟶ B I_set: A(I) ps_context: __⊢ all: x:A. B[x] universe: Type equal: t ∈ T cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  all: x:A. B[x] psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat cat-comp: cat-comp(C) compose: g member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B presheaf-pi-family: presheaf-pi-family(C; X; A; B; I; a) squash: T true: True prop: uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q presheaf-type-ap-morph: (u f) presheaf-type: {X ⊢ _} pscm-ap-type: (AF)s presheaf-type-at: A(a)
Lemmas referenced :  pscm-comp_wf psc-adjoin_wf ps_context_cumulativity2 pscm-ap-type_wf presheaf-type-cumulativity2 psc-fst_wf subtype_rel_self psc_map_wf small-category-cumulativity-2 psc-snd_wf cat-arrow_wf I_set_wf cat-ob_wf presheaf-type_wf ps_context_wf pscm-ap-type-at presheaf-type-at_wf pscm-ap-restriction squash_wf true_wf small-category_wf pscm-adjoin-ap csm_comp_fst_adjoin_set_lemma cc_snd_adjoin_set_lemma psc-adjoin-set_wf equal_wf istype-universe psc-adjoin-set-restriction psc-restriction_wf pscm-ap_wf iff_weakening_equal presheaf-type-ap-morph_wf subtype_rel-equal pscm-presheaf-type-ap-morph presheaf_type_at_pair_lemma cat-comp_wf psc-restriction-comp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis setEquality functionEquality universeIsType inhabitedIsType Error :memTop,  lambdaEquality_alt imageElimination dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry universeEquality independent_isectElimination productElimination independent_functionElimination setElimination rename

Latex:
\mforall{}C:SmallCategory.  \mforall{}X,Delta:ps\_context\{j:l\}(C).  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.
\mforall{}s:psc\_map\{j:l\}(C;  Delta;  X).  \mforall{}I:cat-ob(C).  \mforall{}a:Delta(I).
    (presheaf-pi-family(C;  X;  A;  B;  I;  (s)a)  =  presheaf-pi-family(C;  Delta;  (A)s;  (B)(s  o  p;q);  I;  a))



Date html generated: 2020_05_20-PM-01_28_55
Last ObjectModification: 2020_04_02-PM-01_56_55

Theory : presheaf!models!of!type!theory


Home Index