Nuprl Lemma : pscm-presheaf-pi-family
∀C:SmallCategory. ∀X,Delta:ps_context{j:l}(C). ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}. ∀s:psc_map{j:l}(C; Delta; X). ∀I:cat-ob(C).
∀a:Delta(I).
  (presheaf-pi-family(C; X; A; B; I; (s)a) = presheaf-pi-family(C; Delta; (A)s; (B)(s o p;q); I; a) ∈ Type)
Proof
Definitions occuring in Statement : 
presheaf-pi-family: presheaf-pi-family(C; X; A; B; I; a)
, 
pscm-adjoin: (s;u)
, 
psc-snd: q
, 
psc-fst: p
, 
psc-adjoin: X.A
, 
pscm-ap-type: (AF)s
, 
presheaf-type: {X ⊢ _}
, 
pscm-comp: G o F
, 
pscm-ap: (s)x
, 
psc_map: A ⟶ B
, 
I_set: A(I)
, 
ps_context: __⊢
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
op-cat: op-cat(C)
, 
spreadn: spread4, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
type-cat: TypeCat
, 
cat-comp: cat-comp(C)
, 
compose: f o g
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
presheaf-pi-family: presheaf-pi-family(C; X; A; B; I; a)
, 
squash: ↓T
, 
true: True
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
presheaf-type-ap-morph: (u a f)
, 
presheaf-type: {X ⊢ _}
, 
pscm-ap-type: (AF)s
, 
presheaf-type-at: A(a)
Lemmas referenced : 
pscm-comp_wf, 
psc-adjoin_wf, 
ps_context_cumulativity2, 
pscm-ap-type_wf, 
presheaf-type-cumulativity2, 
psc-fst_wf, 
subtype_rel_self, 
psc_map_wf, 
small-category-cumulativity-2, 
psc-snd_wf, 
cat-arrow_wf, 
I_set_wf, 
cat-ob_wf, 
presheaf-type_wf, 
ps_context_wf, 
pscm-ap-type-at, 
presheaf-type-at_wf, 
pscm-ap-restriction, 
squash_wf, 
true_wf, 
small-category_wf, 
pscm-adjoin-ap, 
csm_comp_fst_adjoin_set_lemma, 
cc_snd_adjoin_set_lemma, 
psc-adjoin-set_wf, 
equal_wf, 
istype-universe, 
psc-adjoin-set-restriction, 
psc-restriction_wf, 
pscm-ap_wf, 
iff_weakening_equal, 
presheaf-type-ap-morph_wf, 
subtype_rel-equal, 
pscm-presheaf-type-ap-morph, 
presheaf_type_at_pair_lemma, 
cat-comp_wf, 
psc-restriction-comp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
setEquality, 
functionEquality, 
universeIsType, 
inhabitedIsType, 
Error :memTop, 
lambdaEquality_alt, 
imageElimination, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
setElimination, 
rename
Latex:
\mforall{}C:SmallCategory.  \mforall{}X,Delta:ps\_context\{j:l\}(C).  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.
\mforall{}s:psc\_map\{j:l\}(C;  Delta;  X).  \mforall{}I:cat-ob(C).  \mforall{}a:Delta(I).
    (presheaf-pi-family(C;  X;  A;  B;  I;  (s)a)  =  presheaf-pi-family(C;  Delta;  (A)s;  (B)(s  o  p;q);  I;  a))
Date html generated:
2020_05_20-PM-01_28_55
Last ObjectModification:
2020_04_02-PM-01_56_55
Theory : presheaf!models!of!type!theory
Home
Index