Nuprl Lemma : csm-p-composition-exists

[X:j⊢]. ∀[A,T:{X ⊢ _}].  (X ⊢ CompOp(A)  X.T ⊢ CompOp((A)p))


Proof




Definitions occuring in Statement :  composition-op: Gamma ⊢ CompOp(A) cc-fst: p cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  csm-composition_wf cube-context-adjoin_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cc-fst_wf composition-op_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt rename introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule universeIsType inhabitedIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A,T:\{X  \mvdash{}  \_\}].    (X  \mvdash{}  CompOp(A)  {}\mRightarrow{}  X.T  \mvdash{}  CompOp((A)p))



Date html generated: 2020_05_20-PM-03_51_36
Last ObjectModification: 2020_04_09-PM-01_11_37

Theory : cubical!type!theory


Home Index