Nuprl Lemma : csm-p-composition-exists
∀[X:j⊢]. ∀[A,T:{X ⊢ _}].  (X ⊢ CompOp(A) 
⇒ X.T ⊢ CompOp((A)p))
Proof
Definitions occuring in Statement : 
composition-op: Gamma ⊢ CompOp(A)
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
csm-composition_wf, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cc-fst_wf, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
rename, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A,T:\{X  \mvdash{}  \_\}].    (X  \mvdash{}  CompOp(A)  {}\mRightarrow{}  X.T  \mvdash{}  CompOp((A)p))
Date html generated:
2020_05_20-PM-03_51_36
Last ObjectModification:
2020_04_09-PM-01_11_37
Theory : cubical!type!theory
Home
Index