Nuprl Lemma : csm-same-cubical-type
∀[Gamma:j⊢]. ∀[A,B:{Gamma ⊢ _}].  ∀[H:j⊢]. ∀[s:H j⟶ Gamma].  H ⊢ (A)s = (B)s supposing Gamma ⊢ A = B
Proof
Definitions occuring in Statement : 
same-cubical-type: Gamma ⊢ A = B
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
same-cubical-type: Gamma ⊢ A = B
, 
and: P ∧ Q
Lemmas referenced : 
csm-ap-type_wf, 
cube_set_map_wf, 
same-cubical-type_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
hypothesis, 
independent_pairFormation, 
equalityTransitivity, 
sqequalRule, 
productIsType, 
equalityIstype, 
inhabitedIsType, 
hypothesisEquality, 
applyLambdaEquality, 
setElimination, 
thin, 
rename, 
productElimination, 
extract_by_obid, 
isectElimination, 
axiomEquality, 
universeIsType, 
instantiate, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A,B:\{Gamma  \mvdash{}  \_\}].
    \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  Gamma].    H  \mvdash{}  (A)s  =  (B)s  supposing  Gamma  \mvdash{}  A  =  B
Date html generated:
2020_05_20-PM-02_59_48
Last ObjectModification:
2020_04_06-AM-10_33_03
Theory : cubical!type!theory
Home
Index