Nuprl Lemma : csm-same-cubical-type

[Gamma:j⊢]. ∀[A,B:{Gamma ⊢ _}].  ∀[H:j⊢]. ∀[s:H j⟶ Gamma].  H ⊢ (A)s (B)s supposing Gamma ⊢ B


Proof




Definitions occuring in Statement :  same-cubical-type: Gamma ⊢ B csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a same-cubical-type: Gamma ⊢ B and: P ∧ Q
Lemmas referenced :  csm-ap-type_wf cube_set_map_wf same-cubical-type_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution equalitySymmetry dependent_set_memberEquality_alt hypothesis independent_pairFormation equalityTransitivity sqequalRule productIsType equalityIstype inhabitedIsType hypothesisEquality applyLambdaEquality setElimination thin rename productElimination extract_by_obid isectElimination axiomEquality universeIsType instantiate isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A,B:\{Gamma  \mvdash{}  \_\}].
    \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  Gamma].    H  \mvdash{}  (A)s  =  (B)s  supposing  Gamma  \mvdash{}  A  =  B



Date html generated: 2020_05_20-PM-02_59_48
Last ObjectModification: 2020_04_06-AM-10_33_03

Theory : cubical!type!theory


Home Index