Nuprl Lemma : cubical-fiber-at

[X,T,A,w,a,I,rho:Top].  (Fiber(w;a)(rho) u:T(rho) × (Path_(A)p (a)p app((w)p; q))((rho;u)))


Proof




Definitions occuring in Statement :  cubical-fiber: Fiber(w;a) path-type: (Path_A b) cubical-app: app(w; u) cc-snd: q cc-fst: p cc-adjoin-cube: (v;u) cube-context-adjoin: X.A csm-ap-term: (t)s csm-ap-type: (AF)s cubical-type-at: A(a) uall: [x:A]. B[x] top: Top product: x:A × B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type-at: A(a) cubical-fiber: Fiber(w;a) cubical-sigma: Σ B pi1: fst(t)
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis sqequalAxiom extract_by_obid sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[X,T,A,w,a,I,rho:Top].    (Fiber(w;a)(rho)  \msim{}  u:T(rho)  \mtimes{}  (Path\_(A)p  (a)p  app((w)p;  q))((rho;u)))



Date html generated: 2018_05_23-AM-09_40_21
Last ObjectModification: 2018_05_20-PM-06_40_39

Theory : cubical!type!theory


Home Index