Nuprl Lemma : cubical-fiber-at
∀[X,T,A,w,a,I,rho:Top].  (Fiber(w;a)(rho) ~ u:T(rho) × (Path_(A)p (a)p app((w)p; q))((rho;u)))
Proof
Definitions occuring in Statement : 
cubical-fiber: Fiber(w;a)
, 
path-type: (Path_A a b)
, 
cubical-app: app(w; u)
, 
cc-snd: q
, 
cc-fst: p
, 
cc-adjoin-cube: (v;u)
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
csm-ap-type: (AF)s
, 
cubical-type-at: A(a)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
product: x:A × B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-type-at: A(a)
, 
cubical-fiber: Fiber(w;a)
, 
cubical-sigma: Σ A B
, 
pi1: fst(t)
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
extract_by_obid, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[X,T,A,w,a,I,rho:Top].    (Fiber(w;a)(rho)  \msim{}  u:T(rho)  \mtimes{}  (Path\_(A)p  (a)p  app((w)p;  q))((rho;u)))
Date html generated:
2018_05_23-AM-09_40_21
Last ObjectModification:
2018_05_20-PM-06_40_39
Theory : cubical!type!theory
Home
Index