Nuprl Lemma : cubical-pi-comp-structure
∀X:j⊢. ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}.  (X ⊢ Compositon(A) 
⇒ X.A +⊢ Compositon(B) 
⇒ X ⊢ Compositon(ΠA B))
Proof
Definitions occuring in Statement : 
composition-structure: Gamma ⊢ Compositon(A)
, 
cubical-pi: ΠA B
, 
cube-context-adjoin: X.A
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
composition-structure-implies-composition-op, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
composition-op-implies-composition-structure, 
cubical-pi_wf, 
pi-comp_wf, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
rename, 
instantiate, 
isectElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
universeIsType
Latex:
\mforall{}X:j\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.
    (X  \mvdash{}  Compositon(A)  {}\mRightarrow{}  X.A  +\mvdash{}  Compositon(B)  {}\mRightarrow{}  X  \mvdash{}  Compositon(\mPi{}A  B))
Date html generated:
2020_05_20-PM-05_12_37
Last ObjectModification:
2020_04_20-AM-10_09_03
Theory : cubical!type!theory
Home
Index