Nuprl Lemma : cubical-pi-comp-structure

X:j⊢. ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}.  (X ⊢ Compositon(A)  X.A +⊢ Compositon(B)  X ⊢ Compositon(ΠB))


Proof




Definitions occuring in Statement :  composition-structure: Gamma ⊢ Compositon(A) cubical-pi: ΠB cube-context-adjoin: X.A cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B
Lemmas referenced :  composition-structure-implies-composition-op cube-context-adjoin_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j composition-op-implies-composition-structure cubical-pi_wf pi-comp_wf composition-structure_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis rename instantiate isectElimination applyEquality because_Cache sqequalRule universeIsType

Latex:
\mforall{}X:j\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.
    (X  \mvdash{}  Compositon(A)  {}\mRightarrow{}  X.A  +\mvdash{}  Compositon(B)  {}\mRightarrow{}  X  \mvdash{}  Compositon(\mPi{}A  B))



Date html generated: 2020_05_20-PM-05_12_37
Last ObjectModification: 2020_04_20-AM-10_09_03

Theory : cubical!type!theory


Home Index