Nuprl Lemma : pi-comp_wf
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[cB:Gamma.A ⊢ CompOp(B)].
(pi-comp(Gamma;A;B;cA;cB) ∈ Gamma ⊢ CompOp(ΠA B))
Proof
Definitions occuring in Statement :
pi-comp: pi-comp(Gamma;A;B;cA;cB)
,
composition-op: Gamma ⊢ CompOp(A)
,
cubical-pi: ΠA B
,
cube-context-adjoin: X.A
,
cubical-type: {X ⊢ _}
,
cubical_set: CubicalSet
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
composition-op: Gamma ⊢ CompOp(A)
,
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
,
cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1)
,
all: ∀x:A. B[x]
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
nat: ℕ
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
and: P ∧ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
pi-comp_wf3,
pi-comp-property,
I_cube_wf,
cubical-subset_wf,
cubical-path-condition'_wf,
cubical-pi_wf,
cubical-path-0_wf,
cubical-type-cumulativity2,
cubical-term_wf,
add-name_wf,
cube-set-restriction_wf,
face-presheaf_wf2,
nc-s_wf,
f-subset-add-name,
csm-ap-type_wf,
cubical_set_cumulativity-i-j,
cubical-type-cumulativity,
csm-comp_wf,
formal-cube_wf1,
subset-iota_wf,
context-map_wf,
nat_properties,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
istype-int,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
istype-le,
nat_wf,
not_wf,
fset-member_wf,
int-deq_wf,
strong-subtype-deq-subtype,
strong-subtype-set3,
le_wf,
strong-subtype-self,
fset_wf,
pi-comp-uniformity,
cube-context-adjoin_wf,
composition-uniformity_wf,
composition-op_wf,
cubical-type_wf,
cubical_set_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
dependent_set_memberEquality_alt,
functionExtensionality,
applyEquality,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
lambdaFormation_alt,
universeIsType,
instantiate,
inhabitedIsType,
because_Cache,
sqequalRule,
setElimination,
rename,
independent_isectElimination,
dependent_functionElimination,
natural_numberEquality,
unionElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
Error :memTop,
independent_pairFormation,
voidElimination,
setEquality,
intEquality
Latex:
\mforall{}[Gamma:j\mvdash{}]. \mforall{}[A:\{Gamma \mvdash{} \_\}]. \mforall{}[B:\{Gamma.A \mvdash{} \_\}]. \mforall{}[cA:Gamma \mvdash{} CompOp(A)].
\mforall{}[cB:Gamma.A \mvdash{} CompOp(B)].
(pi-comp(Gamma;A;B;cA;cB) \mmember{} Gamma \mvdash{} CompOp(\mPi{}A B))
Date html generated:
2020_05_20-PM-04_04_07
Last ObjectModification:
2020_04_10-AM-01_42_08
Theory : cubical!type!theory
Home
Index