Nuprl Lemma : pi-comp_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[cB:Gamma.A ⊢ CompOp(B)].
  (pi-comp(Gamma;A;B;cA;cB) ∈ Gamma ⊢ CompOp(ΠB))


Proof




Definitions occuring in Statement :  pi-comp: pi-comp(Gamma;A;B;cA;cB) composition-op: Gamma ⊢ CompOp(A) cubical-pi: ΠB cube-context-adjoin: X.A cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T composition-op: Gamma ⊢ CompOp(A) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1) all: x:A. B[x] prop: subtype_rel: A ⊆B uimplies: supposing a nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  pi-comp_wf3 pi-comp-property I_cube_wf cubical-subset_wf cubical-path-condition'_wf cubical-pi_wf cubical-path-0_wf cubical-type-cumulativity2 cubical-term_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf cubical_set_cumulativity-i-j cubical-type-cumulativity csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf pi-comp-uniformity cube-context-adjoin_wf composition-uniformity_wf composition-op_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt dependent_set_memberEquality_alt functionExtensionality applyEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaFormation_alt universeIsType instantiate inhabitedIsType because_Cache sqequalRule setElimination rename independent_isectElimination dependent_functionElimination natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination setEquality intEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma.A  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].
\mforall{}[cB:Gamma.A  \mvdash{}  CompOp(B)].
    (pi-comp(Gamma;A;B;cA;cB)  \mmember{}  Gamma  \mvdash{}  CompOp(\mPi{}A  B))



Date html generated: 2020_05_20-PM-04_04_07
Last ObjectModification: 2020_04_10-AM-01_42_08

Theory : cubical!type!theory


Home Index