Nuprl Lemma : cubical-sigma-intro

G:j⊢. ∀A:{G ⊢ _}. ∀B:{G.A ⊢ _}.  ((∃a:{G ⊢ _:A}. {G ⊢ _:(B)[a]})  {G ⊢ _:Σ B})


Proof




Definitions occuring in Statement :  cubical-sigma: Σ B csm-id-adjoin: [u] cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] exists: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cubical_set: CubicalSet uall: [x:A]. B[x] cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x csm-id-adjoin: [u] pscm-id-adjoin: [u] csm-adjoin: (s;u) pscm-adjoin: (s;u) csm-id: 1(X) pscm-id: 1(X) cubical-sigma: Σ B presheaf-sigma: Σ B cc-adjoin-cube: (v;u) psc-adjoin-set: (v;u)
Lemmas referenced :  presheaf-sigma-intro cube-cat_wf cubical-type-sq-presheaf-type cubical-term-sq-presheaf-term
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis sqequalRule isectElimination Error :memTop

Latex:
\mforall{}G:j\mvdash{}.  \mforall{}A:\{G  \mvdash{}  \_\}.  \mforall{}B:\{G.A  \mvdash{}  \_\}.    ((\mexists{}a:\{G  \mvdash{}  \_:A\}.  \{G  \mvdash{}  \_:(B)[a]\})  {}\mRightarrow{}  \{G  \mvdash{}  \_:\mSigma{}  A  B\})



Date html generated: 2020_05_20-PM-02_34_41
Last ObjectModification: 2020_04_03-PM-08_45_05

Theory : cubical!type!theory


Home Index