Nuprl Lemma : cubical-sigma-intro
∀G:j⊢. ∀A:{G ⊢ _}. ∀B:{G.A ⊢ _}.  ((∃a:{G ⊢ _:A}. {G ⊢ _:(B)[a]}) 
⇒ {G ⊢ _:Σ A B})
Proof
Definitions occuring in Statement : 
cubical-sigma: Σ A B
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
cube-context-adjoin: X.A
, 
psc-adjoin: X.A
, 
I_cube: A(I)
, 
I_set: A(I)
, 
cubical-type-at: A(a)
, 
presheaf-type-at: A(a)
, 
cube-set-restriction: f(s)
, 
psc-restriction: f(s)
, 
cubical-type-ap-morph: (u a f)
, 
presheaf-type-ap-morph: (u a f)
, 
csm-ap-type: (AF)s
, 
pscm-ap-type: (AF)s
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
csm-id-adjoin: [u]
, 
pscm-id-adjoin: [u]
, 
csm-adjoin: (s;u)
, 
pscm-adjoin: (s;u)
, 
csm-id: 1(X)
, 
pscm-id: 1(X)
, 
cubical-sigma: Σ A B
, 
presheaf-sigma: Σ A B
, 
cc-adjoin-cube: (v;u)
, 
psc-adjoin-set: (v;u)
Lemmas referenced : 
presheaf-sigma-intro, 
cube-cat_wf, 
cubical-type-sq-presheaf-type, 
cubical-term-sq-presheaf-term
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesis, 
sqequalRule, 
isectElimination, 
Error :memTop
Latex:
\mforall{}G:j\mvdash{}.  \mforall{}A:\{G  \mvdash{}  \_\}.  \mforall{}B:\{G.A  \mvdash{}  \_\}.    ((\mexists{}a:\{G  \mvdash{}  \_:A\}.  \{G  \mvdash{}  \_:(B)[a]\})  {}\mRightarrow{}  \{G  \mvdash{}  \_:\mSigma{}  A  B\})
Date html generated:
2020_05_20-PM-02_34_41
Last ObjectModification:
2020_04_03-PM-08_45_05
Theory : cubical!type!theory
Home
Index