Nuprl Lemma : cubical-sigma-intro
∀G:j⊢. ∀A:{G ⊢ _}. ∀B:{G.A ⊢ _}. ((∃a:{G ⊢ _:A}. {G ⊢ _:(B)[a]})
⇒ {G ⊢ _:Σ A B})
Proof
Definitions occuring in Statement :
cubical-sigma: Σ A B
,
csm-id-adjoin: [u]
,
cube-context-adjoin: X.A
,
cubical-term: {X ⊢ _:A}
,
csm-ap-type: (AF)s
,
cubical-type: {X ⊢ _}
,
cubical_set: CubicalSet
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
cubical_set: CubicalSet
,
uall: ∀[x:A]. B[x]
,
cube-context-adjoin: X.A
,
psc-adjoin: X.A
,
I_cube: A(I)
,
I_set: A(I)
,
cubical-type-at: A(a)
,
presheaf-type-at: A(a)
,
cube-set-restriction: f(s)
,
psc-restriction: f(s)
,
cubical-type-ap-morph: (u a f)
,
presheaf-type-ap-morph: (u a f)
,
csm-ap-type: (AF)s
,
pscm-ap-type: (AF)s
,
csm-ap: (s)x
,
pscm-ap: (s)x
,
csm-id-adjoin: [u]
,
pscm-id-adjoin: [u]
,
csm-adjoin: (s;u)
,
pscm-adjoin: (s;u)
,
csm-id: 1(X)
,
pscm-id: 1(X)
,
cubical-sigma: Σ A B
,
presheaf-sigma: Σ A B
,
cc-adjoin-cube: (v;u)
,
psc-adjoin-set: (v;u)
Lemmas referenced :
presheaf-sigma-intro,
cube-cat_wf,
cubical-type-sq-presheaf-type,
cubical-term-sq-presheaf-term
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
dependent_functionElimination,
thin,
hypothesis,
sqequalRule,
isectElimination,
Error :memTop
Latex:
\mforall{}G:j\mvdash{}. \mforall{}A:\{G \mvdash{} \_\}. \mforall{}B:\{G.A \mvdash{} \_\}. ((\mexists{}a:\{G \mvdash{} \_:A\}. \{G \mvdash{} \_:(B)[a]\}) {}\mRightarrow{} \{G \mvdash{} \_:\mSigma{} A B\})
Date html generated:
2020_05_20-PM-02_34_41
Last ObjectModification:
2020_04_03-PM-08_45_05
Theory : cubical!type!theory
Home
Index