Nuprl Lemma : presheaf-sigma-intro
∀C:SmallCategory. ∀G:ps_context{j:l}(C). ∀A:{G ⊢ _}. ∀B:{G.A ⊢ _}.  ((∃a:{G ⊢ _:A}. {G ⊢ _:(B)[a]}) 
⇒ {G ⊢ _:Σ A B})
Proof
Definitions occuring in Statement : 
presheaf-sigma: Σ A B
, 
pscm-id-adjoin: [u]
, 
psc-adjoin: X.A
, 
presheaf-term: {X ⊢ _:A}
, 
pscm-ap-type: (AF)s
, 
presheaf-type: {X ⊢ _}
, 
ps_context: __⊢
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
small-category: SmallCategory
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
presheaf-pair_wf, 
ps_context_cumulativity2, 
presheaf-type-cumulativity2, 
psc-adjoin_wf, 
presheaf-term_wf, 
pscm-ap-type_wf, 
pscm-id-adjoin_wf, 
presheaf-type_wf, 
small-category-cumulativity-2, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
rename, 
introduction, 
cut, 
instantiate, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
productIsType, 
universeIsType
Latex:
\mforall{}C:SmallCategory.  \mforall{}G:ps\_context\{j:l\}(C).  \mforall{}A:\{G  \mvdash{}  \_\}.  \mforall{}B:\{G.A  \mvdash{}  \_\}.
    ((\mexists{}a:\{G  \mvdash{}  \_:A\}.  \{G  \mvdash{}  \_:(B)[a]\})  {}\mRightarrow{}  \{G  \mvdash{}  \_:\mSigma{}  A  B\})
Date html generated:
2020_05_20-PM-01_35_35
Last ObjectModification:
2020_04_02-PM-06_35_37
Theory : presheaf!models!of!type!theory
Home
Index