Nuprl Lemma : presheaf-sigma-intro

C:SmallCategory. ∀G:ps_context{j:l}(C). ∀A:{G ⊢ _}. ∀B:{G.A ⊢ _}.  ((∃a:{G ⊢ _:A}. {G ⊢ _:(B)[a]})  {G ⊢ _:Σ B})


Proof




Definitions occuring in Statement :  presheaf-sigma: Σ B pscm-id-adjoin: [u] psc-adjoin: X.A presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} ps_context: __⊢ all: x:A. B[x] exists: x:A. B[x] implies:  Q small-category: SmallCategory
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B
Lemmas referenced :  presheaf-pair_wf ps_context_cumulativity2 presheaf-type-cumulativity2 psc-adjoin_wf presheaf-term_wf pscm-ap-type_wf pscm-id-adjoin_wf presheaf-type_wf small-category-cumulativity-2 ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin rename introduction cut instantiate extract_by_obid isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule productIsType universeIsType

Latex:
\mforall{}C:SmallCategory.  \mforall{}G:ps\_context\{j:l\}(C).  \mforall{}A:\{G  \mvdash{}  \_\}.  \mforall{}B:\{G.A  \mvdash{}  \_\}.
    ((\mexists{}a:\{G  \mvdash{}  \_:A\}.  \{G  \mvdash{}  \_:(B)[a]\})  {}\mRightarrow{}  \{G  \mvdash{}  \_:\mSigma{}  A  B\})



Date html generated: 2020_05_20-PM-01_35_35
Last ObjectModification: 2020_04_02-PM-06_35_37

Theory : presheaf!models!of!type!theory


Home Index