Nuprl Lemma : discrete-cubical-term-is-constant

Not every term of discrete cubical type is constant, but when the
context is the formal-cube(I) -- Yoneda(I) -- then it is.⋅

[T:Type]. ∀[I:fset(ℕ)]. ∀[t:{formal-cube(I) ⊢ _:discr(T)}].  (t discr(t(1)) ∈ {formal-cube(I) ⊢ _:discr(T)})


Proof




Definitions occuring in Statement :  discrete-cubical-term: discr(t) discrete-cubical-type: discr(T) cubical-term-at: u(a) cubical-term: {X ⊢ _:A} formal-cube: formal-cube(I) nh-id: 1 fset: fset(T) nat: uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cube-cat: CubeCat all: x:A. B[x] top: Top discrete-cubical-type: discr(T) discrete-presheaf-type: discr(T) formal-cube: formal-cube(I) Yoneda: Yoneda(I) discrete-cubical-term: discr(t) discrete-presheaf-term: discr(t) cubical-term-at: u(a) presheaf-term-at: u(a)
Lemmas referenced :  discrete-presheaf-term-is-constant cube-cat_wf cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma cubical-term-sq-presheaf-term cat_id_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[t:\{formal-cube(I)  \mvdash{}  \_:discr(T)\}].    (t  =  discr(t(1)))



Date html generated: 2018_05_23-AM-09_14_26
Last ObjectModification: 2018_05_20-PM-06_13_24

Theory : cubical!type!theory


Home Index