Nuprl Lemma : discrete-presheaf-term-is-constant

Not every term of discrete presheaf type is constant, but when the
context is the Yoneda(I) -- Yoneda(I) -- then it is.⋅

[C:SmallCategory]. ∀[T:Type]. ∀[I:cat-ob(C)]. ∀[t:{Yoneda(I) ⊢ _:discr(T)}].
  (t discr(t(cat-id(C) I)) ∈ {Yoneda(I) ⊢ _:discr(T)})


Proof




Definitions occuring in Statement :  discrete-presheaf-term: discr(t) discrete-presheaf-type: discr(T) presheaf-term-at: u(a) presheaf-term: {X ⊢ _:A} Yoneda: Yoneda(I) uall: [x:A]. B[x] apply: a universe: Type equal: t ∈ T cat-id: cat-id(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a presheaf-term-at: u(a) discrete-presheaf-term: discr(t) implies:  Q
Lemmas referenced :  discrete-presheaf-term-is-map Yoneda_wf ps-discrete-map-is-constant subtype_rel_weakening presheaf-term_wf2 discrete-presheaf-type_wf subtype_rel_universe1 psc_map_wf small-category-cumulativity-2 discrete-set_wf ext-eq_inversion equal_functionality_wrt_subtype_rel2 cat-ob_wf istype-universe small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis because_Cache applyEquality sqequalRule independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType universeEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[T:Type].  \mforall{}[I:cat-ob(C)].  \mforall{}[t:\{Yoneda(I)  \mvdash{}  \_:discr(T)\}].
    (t  =  discr(t(cat-id(C)  I)))



Date html generated: 2020_05_20-PM-01_34_37
Last ObjectModification: 2020_04_03-PM-00_16_16

Theory : presheaf!models!of!type!theory


Home Index