Nuprl Lemma : discrete-presheaf-term-is-constant
Not every term of a discrete presheaf type is constant, but when the
context is the Yoneda(I) -- Yoneda(I) -- then it is.⋅
∀[C:SmallCategory]. ∀[T:Type]. ∀[I:cat-ob(C)]. ∀[t:{Yoneda(I) ⊢ _:discr(T)}].
  (t = discr(t(cat-id(C) I)) ∈ {Yoneda(I) ⊢ _:discr(T)})
Proof
Definitions occuring in Statement : 
discrete-presheaf-term: discr(t)
, 
discrete-presheaf-type: discr(T)
, 
presheaf-term-at: u(a)
, 
presheaf-term: {X ⊢ _:A}
, 
Yoneda: Yoneda(I)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
universe: Type
, 
equal: s = t ∈ T
, 
cat-id: cat-id(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
presheaf-term-at: u(a)
, 
discrete-presheaf-term: discr(t)
, 
implies: P 
⇒ Q
Lemmas referenced : 
discrete-presheaf-term-is-map, 
Yoneda_wf, 
ps-discrete-map-is-constant, 
subtype_rel_weakening, 
presheaf-term_wf2, 
discrete-presheaf-type_wf, 
subtype_rel_universe1, 
psc_map_wf, 
small-category-cumulativity-2, 
discrete-set_wf, 
ext-eq_inversion, 
equal_functionality_wrt_subtype_rel2, 
cat-ob_wf, 
istype-universe, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
applyEquality, 
sqequalRule, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
universeIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
universeEquality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[T:Type].  \mforall{}[I:cat-ob(C)].  \mforall{}[t:\{Yoneda(I)  \mvdash{}  \_:discr(T)\}].
    (t  =  discr(t(cat-id(C)  I)))
Date html generated:
2020_05_20-PM-01_34_37
Last ObjectModification:
2020_04_03-PM-00_16_16
Theory : presheaf!models!of!type!theory
Home
Index