Nuprl Lemma : discrete-presheaf-term-is-map

[C:SmallCategory]. ∀[T:Type]. ∀[X:ps_context{j:l}(C)].  {X ⊢ _:discr(T)} ≡ psc_map{[i j]:l}(C; X; discrete-set(T))


Proof




Definitions occuring in Statement :  discrete-presheaf-type: discr(T) presheaf-term: {X ⊢ _:A} psc_map: A ⟶ B discrete-set: discrete-set(A) ps_context: __⊢ ext-eq: A ≡ B uall: [x:A]. B[x] universe: Type small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B presheaf-term: {X ⊢ _:A} discrete-presheaf-type: discr(T) all: x:A. B[x] psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) discrete-set: discrete-set(A) type-cat: TypeCat compose: g I_set: A(I) squash: T prop: ps_context: __⊢ uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q psc-restriction: f(s) functor-arrow: arrow(F) cat-ob: cat-ob(C) pi1: fst(t) presheaf-type-at: A(a)
Lemmas referenced :  presheaf-term_wf discrete-presheaf-type_wf psc_map_wf small-category-cumulativity-2 ps_context_cumulativity2 discrete-set_wf ps_context_wf istype-universe small-category_wf presheaf_type_at_pair_lemma presheaf_type_ap_morph_pair_lemma cat_ob_op_lemma cat_arrow_triple_lemma ob_pair_lemma op-cat-arrow cat_comp_tuple_lemma arrow_pair_lemma equal_wf squash_wf true_wf functor-arrow_wf op-cat_wf type-cat_wf subtype_rel-equal cat-ob_wf cat-arrow_wf subtype_rel_self iff_weakening_equal I_set_wf functor-ob_wf psc-restriction_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation lambdaEquality_alt universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate applyEquality sqequalRule cumulativity productElimination independent_pairEquality axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType universeEquality setElimination rename dependent_functionElimination Error :memTop,  dependent_set_memberEquality_alt because_Cache lambdaFormation_alt functionExtensionality imageElimination equalityTransitivity equalitySymmetry independent_isectElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination functionIsType equalityIstype applyLambdaEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[T:Type].  \mforall{}[X:ps\_context\{j:l\}(C)].
    \{X  \mvdash{}  \_:discr(T)\}  \mequiv{}  psc\_map\{[i  |  j]:l\}(C;  X;  discrete-set(T))



Date html generated: 2020_05_20-PM-01_34_26
Last ObjectModification: 2020_04_03-AM-01_44_44

Theory : presheaf!models!of!type!theory


Home Index