Nuprl Lemma : discrete-presheaf-term-is-map
∀[C:SmallCategory]. ∀[T:Type]. ∀[X:ps_context{j:l}(C)].  {X ⊢ _:discr(T)} ≡ psc_map{[i | j]:l}(C; X; discrete-set(T))
Proof
Definitions occuring in Statement : 
discrete-presheaf-type: discr(T)
, 
presheaf-term: {X ⊢ _:A}
, 
psc_map: A ⟶ B
, 
discrete-set: discrete-set(A)
, 
ps_context: __⊢
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
presheaf-term: {X ⊢ _:A}
, 
discrete-presheaf-type: discr(T)
, 
all: ∀x:A. B[x]
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
discrete-set: discrete-set(A)
, 
type-cat: TypeCat
, 
compose: f o g
, 
I_set: A(I)
, 
squash: ↓T
, 
prop: ℙ
, 
ps_context: __⊢
, 
uimplies: b supposing a
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
psc-restriction: f(s)
, 
functor-arrow: arrow(F)
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
presheaf-type-at: A(a)
Lemmas referenced : 
presheaf-term_wf, 
discrete-presheaf-type_wf, 
psc_map_wf, 
small-category-cumulativity-2, 
ps_context_cumulativity2, 
discrete-set_wf, 
ps_context_wf, 
istype-universe, 
small-category_wf, 
presheaf_type_at_pair_lemma, 
presheaf_type_ap_morph_pair_lemma, 
cat_ob_op_lemma, 
cat_arrow_triple_lemma, 
ob_pair_lemma, 
op-cat-arrow, 
cat_comp_tuple_lemma, 
arrow_pair_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
functor-arrow_wf, 
op-cat_wf, 
type-cat_wf, 
subtype_rel-equal, 
cat-ob_wf, 
cat-arrow_wf, 
subtype_rel_self, 
iff_weakening_equal, 
I_set_wf, 
functor-ob_wf, 
psc-restriction_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
lambdaEquality_alt, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
applyEquality, 
sqequalRule, 
cumulativity, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
universeEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
Error :memTop, 
dependent_set_memberEquality_alt, 
because_Cache, 
lambdaFormation_alt, 
functionExtensionality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
functionIsType, 
equalityIstype, 
applyLambdaEquality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[T:Type].  \mforall{}[X:ps\_context\{j:l\}(C)].
    \{X  \mvdash{}  \_:discr(T)\}  \mequiv{}  psc\_map\{[i  |  j]:l\}(C;  X;  discrete-set(T))
Date html generated:
2020_05_20-PM-01_34_26
Last ObjectModification:
2020_04_03-AM-01_44_44
Theory : presheaf!models!of!type!theory
Home
Index