Nuprl Lemma : discrete-set_wf

[C:SmallCategory]. ∀[A:𝕌{j}].  (discrete-set(A) ∈ ps_context{j:l}(C))


Proof




Definitions occuring in Statement :  discrete-set: discrete-set(A) ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T universe: Type small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q discrete-set: discrete-set(A) all: x:A. B[x] psc-restriction: f(s) pi2: snd(t) subtype_rel: A ⊆B
Lemmas referenced :  ps_context-ext cat-ob_wf cat-arrow_wf I_set_pair_redex_lemma psc_restriction_pair_lemma cat-id_wf cat-comp_wf istype-universe small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination sqequalRule dependent_set_memberEquality_alt dependent_pairEquality_alt lambdaEquality_alt cumulativity universeIsType hypothesis applyEquality inhabitedIsType because_Cache functionIsType dependent_functionElimination Error :memTop,  independent_pairFormation lambdaFormation_alt productIsType equalityIstype axiomEquality equalityTransitivity equalitySymmetry instantiate universeEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A:\mBbbU{}\{j\}].    (discrete-set(A)  \mmember{}  ps\_context\{j:l\}(C))



Date html generated: 2020_05_20-PM-01_23_44
Last ObjectModification: 2020_03_31-PM-07_35_54

Theory : presheaf!models!of!type!theory


Home Index