Nuprl Lemma : discrete-set_wf
∀[C:SmallCategory]. ∀[A:𝕌{j}].  (discrete-set(A) ∈ ps_context{j:l}(C))
Proof
Definitions occuring in Statement : 
discrete-set: discrete-set(A)
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
discrete-set: discrete-set(A)
, 
all: ∀x:A. B[x]
, 
psc-restriction: f(s)
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
ps_context-ext, 
cat-ob_wf, 
cat-arrow_wf, 
I_set_pair_redex_lemma, 
psc_restriction_pair_lemma, 
cat-id_wf, 
cat-comp_wf, 
istype-universe, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
sqequalRule, 
dependent_set_memberEquality_alt, 
dependent_pairEquality_alt, 
lambdaEquality_alt, 
cumulativity, 
universeIsType, 
hypothesis, 
applyEquality, 
inhabitedIsType, 
because_Cache, 
functionIsType, 
dependent_functionElimination, 
Error :memTop, 
independent_pairFormation, 
lambdaFormation_alt, 
productIsType, 
equalityIstype, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A:\mBbbU{}\{j\}].    (discrete-set(A)  \mmember{}  ps\_context\{j:l\}(C))
Date html generated:
2020_05_20-PM-01_23_44
Last ObjectModification:
2020_03_31-PM-07_35_54
Theory : presheaf!models!of!type!theory
Home
Index