Nuprl Lemma : ps-discrete-map-is-constant
∀[C:SmallCategory]. ∀[T:𝕌{j}]. ∀[I:cat-ob(C)]. ∀[s:psc_map{[i | j]:l}(C; Yoneda(I); discrete-set(T))].
  (s = (λJ,g. (s I (cat-id(C) I))) ∈ psc_map{[i | j]:l}(C; Yoneda(I); discrete-set(T)))
Proof
Definitions occuring in Statement : 
psc_map: A ⟶ B
, 
discrete-set: discrete-set(A)
, 
Yoneda: Yoneda(I)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
cat-id: cat-id(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
Yoneda: Yoneda(I)
, 
discrete-set: discrete-set(A)
, 
type-cat: TypeCat
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
compose: f o g
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
and: P ∧ Q
Lemmas referenced : 
cat_arrow_triple_lemma, 
ob_pair_lemma, 
cat_comp_tuple_lemma, 
arrow_pair_lemma, 
psc_map_wf, 
small-category-cumulativity-2, 
Yoneda_wf, 
discrete-set_wf, 
cat-ob_wf, 
istype-universe, 
small-category_wf, 
subtype_rel-equal, 
op-cat_wf, 
cat_ob_op_lemma, 
cat-arrow_wf, 
op-cat-arrow, 
cat-id_wf, 
cat-comp-ident, 
cat-comp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
dependent_set_memberEquality_alt, 
universeIsType, 
instantiate, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
cumulativity, 
universeEquality, 
functionExtensionality, 
because_Cache, 
independent_isectElimination, 
applyLambdaEquality, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
equalityIstype, 
lambdaEquality_alt
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[T:\mBbbU{}\{j\}].  \mforall{}[I:cat-ob(C)].
\mforall{}[s:psc\_map\{[i  |  j]:l\}(C;  Yoneda(I);  discrete-set(T))].
    (s  =  (\mlambda{}J,g.  (s  I  (cat-id(C)  I))))
Date html generated:
2020_05_20-PM-01_34_33
Last ObjectModification:
2020_04_03-PM-00_49_47
Theory : presheaf!models!of!type!theory
Home
Index