Nuprl Lemma : ps-discrete-map-is-constant

[C:SmallCategory]. ∀[T:𝕌{j}]. ∀[I:cat-ob(C)]. ∀[s:psc_map{[i j]:l}(C; Yoneda(I); discrete-set(T))].
  (s J,g. (s (cat-id(C) I))) ∈ psc_map{[i j]:l}(C; Yoneda(I); discrete-set(T)))


Proof




Definitions occuring in Statement :  psc_map: A ⟶ B discrete-set: discrete-set(A) Yoneda: Yoneda(I) uall: [x:A]. B[x] apply: a lambda: λx.A[x] universe: Type equal: t ∈ T cat-id: cat-id(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) Yoneda: Yoneda(I) discrete-set: discrete-set(A) type-cat: TypeCat all: x:A. B[x] member: t ∈ T compose: g subtype_rel: A ⊆B uimplies: supposing a and: P ∧ Q
Lemmas referenced :  cat_arrow_triple_lemma ob_pair_lemma cat_comp_tuple_lemma arrow_pair_lemma psc_map_wf small-category-cumulativity-2 Yoneda_wf discrete-set_wf cat-ob_wf istype-universe small-category_wf subtype_rel-equal op-cat_wf cat_ob_op_lemma cat-arrow_wf op-cat-arrow cat-id_wf cat-comp-ident cat-comp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalHypSubstitution setElimination thin rename cut sqequalRule introduction extract_by_obid dependent_functionElimination Error :memTop,  hypothesis dependent_set_memberEquality_alt universeIsType instantiate isectElimination hypothesisEquality applyEquality cumulativity universeEquality functionExtensionality because_Cache independent_isectElimination applyLambdaEquality productElimination equalityTransitivity equalitySymmetry functionIsType equalityIstype lambdaEquality_alt

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[T:\mBbbU{}\{j\}].  \mforall{}[I:cat-ob(C)].
\mforall{}[s:psc\_map\{[i  |  j]:l\}(C;  Yoneda(I);  discrete-set(T))].
    (s  =  (\mlambda{}J,g.  (s  I  (cat-id(C)  I))))



Date html generated: 2020_05_20-PM-01_34_33
Last ObjectModification: 2020_04_03-PM-00_49_47

Theory : presheaf!models!of!type!theory


Home Index