Step * 1 of Lemma discrete-path-endpoints


1. CubicalSet{j}
2. Type
3. {X ⊢ _:discr(T)}
4. {X ⊢ _:discr(T)}
5. {X ⊢ _:(Path_discr(T) b)}
6. path-eta(p) ∈ {X.𝕀 ⊢ _:discr(T)}
⊢ b ∈ {X ⊢ _:discr(T)}
BY
Assert ⌜(path-eta(p))[0(𝕀)] (path-eta(p))[1(𝕀)] ∈ {X ⊢ _:discr(T)}⌝⋅ }

1
.....assertion..... 
1. CubicalSet{j}
2. Type
3. {X ⊢ _:discr(T)}
4. {X ⊢ _:discr(T)}
5. {X ⊢ _:(Path_discr(T) b)}
6. path-eta(p) ∈ {X.𝕀 ⊢ _:discr(T)}
⊢ (path-eta(p))[0(𝕀)] (path-eta(p))[1(𝕀)] ∈ {X ⊢ _:discr(T)}

2
1. CubicalSet{j}
2. Type
3. {X ⊢ _:discr(T)}
4. {X ⊢ _:discr(T)}
5. {X ⊢ _:(Path_discr(T) b)}
6. path-eta(p) ∈ {X.𝕀 ⊢ _:discr(T)}
7. (path-eta(p))[0(𝕀)] (path-eta(p))[1(𝕀)] ∈ {X ⊢ _:discr(T)}
⊢ b ∈ {X ⊢ _:discr(T)}


Latex:


Latex:

1.  X  :  CubicalSet\{j\}
2.  T  :  Type
3.  a  :  \{X  \mvdash{}  \_:discr(T)\}
4.  b  :  \{X  \mvdash{}  \_:discr(T)\}
5.  p  :  \{X  \mvdash{}  \_:(Path\_discr(T)  a  b)\}
6.  path-eta(p)  \mmember{}  \{X.\mBbbI{}  \mvdash{}  \_:discr(T)\}
\mvdash{}  a  =  b


By


Latex:
Assert  \mkleeneopen{}(path-eta(p))[0(\mBbbI{})]  =  (path-eta(p))[1(\mBbbI{})]\mkleeneclose{}\mcdot{}




Home Index