Nuprl Lemma : discrete-path-endpoints

[X:j⊢]. ∀[T:Type].
  ∀a:{X ⊢ _:discr(T)}. ∀[b:{X ⊢ _:discr(T)}]. ∀[p:{X ⊢ _:(Path_discr(T) b)}].  (a b ∈ {X ⊢ _:discr(T)})


Proof




Definitions occuring in Statement :  path-type: (Path_A b) discrete-cubical-type: discr(T) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B implies:  Q uimplies: supposing a discrete-cubical-type: discr(T) cubical-term-at: u(a) cubical-term: {X ⊢ _:A} interval-type: 𝕀 cube-context-adjoin: X.A cubical-type-at: A(a) interval-presheaf: 𝕀 constant-cubical-type: (X) pi1: fst(t) interval-1: 1(𝕀) csm-id-adjoin: [u] csm-ap: (s)x interval-0: 0(𝕀) csm-id: 1(X) csm-adjoin: (s;u) nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A false: False names-hom: I ⟶ J so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) names: names(I) prop: squash: T DeMorgan-algebra: DeMorganAlgebra guard: {T} true: True iff: ⇐⇒ Q rev_implies:  Q pi2: snd(t) cubical-path-app: pth r
Lemmas referenced :  path-eta_wf discrete-cubical-type_wf path-type-subtype csm-discrete-cubical-type cubical-term_wf path-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j istype-universe cubical_set_wf I_cube_wf fset_wf nat_wf cubical-term-equal csm-ap-term_wf cube-context-adjoin_wf interval-type_wf csm-id-adjoin_wf-interval-0 subset-cubical-term2 sub_cubical_set_self csm-ap-type_wf cubical_type_at_pair_lemma csm-ap-term-at I_cube_pair_redex_lemma cube_set_restriction_pair_lemma cubical_type_ap_morph_pair_lemma istype-void istype-le fset-singleton_wf dM_inc_wf member-fset-singleton int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self fset-member_wf names_wf equal_wf squash_wf true_wf dM0_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM1_wf subtype_rel_self iff_weakening_equal cube-set-restriction_wf dM-lift-0 dM-lift-1 names-hom_wf dM-lift-inc cubical-path-app-0 cubical-path-app-1 path-eta-0 path-eta-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality because_Cache sqequalRule Error :memTop,  universeIsType instantiate isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType cumulativity lambdaEquality_alt dependent_functionElimination functionIsTypeImplies universeEquality equalityTransitivity equalitySymmetry equalityIstype independent_functionElimination functionExtensionality independent_isectElimination setElimination rename dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation voidElimination intEquality productElimination imageElimination dependent_pairEquality_alt productEquality isectEquality imageMemberEquality baseClosed hyp_replacement

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T:Type].
    \mforall{}a:\{X  \mvdash{}  \_:discr(T)\}.  \mforall{}[b:\{X  \mvdash{}  \_:discr(T)\}].  \mforall{}[p:\{X  \mvdash{}  \_:(Path\_discr(T)  a  b)\}].    (a  =  b)



Date html generated: 2020_05_20-PM-03_36_05
Last ObjectModification: 2020_04_08-PM-09_54_51

Theory : cubical!type!theory


Home Index