Step
*
1
of Lemma
equals-transprt
1. Gamma : CubicalSet{j}
2. A : {Gamma.𝕀 ⊢ _}
3. cA : Gamma.𝕀 +⊢ Compositon(A)
4. a : {Gamma ⊢ _:(A)[0(𝕀)]}
5. xx : Top
⊢ comp cA [0(𝔽) ⊢→ discr(⋅)] a = comp cA [0(𝔽) ⊢→ xx] a ∈ {Gamma ⊢ _:(A)[1(𝕀)]}
BY
{ SubsumeC ⌜{Gamma ⊢ _:(A)[1(𝕀)][0(𝔽) |⟶ (discr(⋅))[1(𝕀)]]}⌝⋅ }
1
1. Gamma : CubicalSet{j}
2. A : {Gamma.𝕀 ⊢ _}
3. cA : Gamma.𝕀 +⊢ Compositon(A)
4. a : {Gamma ⊢ _:(A)[0(𝕀)]}
5. xx : Top
⊢ comp cA [0(𝔽) ⊢→ discr(⋅)] a = comp cA [0(𝔽) ⊢→ xx] a ∈ {Gamma ⊢ _:(A)[1(𝕀)][0(𝔽) |⟶ (discr(⋅))[1(𝕀)]]}
2
1. Gamma : CubicalSet{j}
2. A : {Gamma.𝕀 ⊢ _}
3. cA : Gamma.𝕀 +⊢ Compositon(A)
4. a : {Gamma ⊢ _:(A)[0(𝕀)]}
5. xx : Top
6. comp cA [0(𝔽) ⊢→ discr(⋅)] a = comp cA [0(𝔽) ⊢→ xx] a ∈ {Gamma ⊢ _:(A)[1(𝕀)][0(𝔽) |⟶ (discr(⋅))[1(𝕀)]]}
⊢ {Gamma ⊢ _:(A)[1(𝕀)][0(𝔽) |⟶ (discr(⋅))[1(𝕀)]]} ⊆r {Gamma ⊢ _:(A)[1(𝕀)]}
Latex:
Latex:
1. Gamma : CubicalSet\{j\}
2. A : \{Gamma.\mBbbI{} \mvdash{} \_\}
3. cA : Gamma.\mBbbI{} +\mvdash{} Compositon(A)
4. a : \{Gamma \mvdash{} \_:(A)[0(\mBbbI{})]\}
5. xx : Top
\mvdash{} comp cA [0(\mBbbF{}) \mvdash{}\mrightarrow{} discr(\mcdot{})] a = comp cA [0(\mBbbF{}) \mvdash{}\mrightarrow{} xx] a
By
Latex:
SubsumeC \mkleeneopen{}\{Gamma \mvdash{} \_:(A)[1(\mBbbI{})][0(\mBbbF{}) |{}\mrightarrow{} (discr(\mcdot{}))[1(\mBbbI{})]]\}\mkleeneclose{}\mcdot{}
Home
Index