Nuprl Lemma : equiv-comp-exists

H:j⊢. ∀A,E:{H ⊢ _}.  (H ⊢ CompOp(A)  H ⊢ CompOp(E)  H ⊢ CompOp(Equiv(A;E)))


Proof




Definitions occuring in Statement :  composition-op: Gamma ⊢ CompOp(A) cubical-equiv: Equiv(T;A) cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B
Lemmas referenced :  equiv-comp_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j composition-op_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt rename introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule universeIsType inhabitedIsType

Latex:
\mforall{}H:j\mvdash{}.  \mforall{}A,E:\{H  \mvdash{}  \_\}.    (H  \mvdash{}  CompOp(A)  {}\mRightarrow{}  H  \mvdash{}  CompOp(E)  {}\mRightarrow{}  H  \mvdash{}  CompOp(Equiv(A;E)))



Date html generated: 2020_05_20-PM-07_20_33
Last ObjectModification: 2020_04_25-PM-09_50_34

Theory : cubical!type!theory


Home Index