Nuprl Lemma : equiv-comp-exists
∀H:j⊢. ∀A,E:{H ⊢ _}.  (H ⊢ CompOp(A) 
⇒ H ⊢ CompOp(E) 
⇒ H ⊢ CompOp(Equiv(A;E)))
Proof
Definitions occuring in Statement : 
composition-op: Gamma ⊢ CompOp(A)
, 
cubical-equiv: Equiv(T;A)
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
equiv-comp_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
rename, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}H:j\mvdash{}.  \mforall{}A,E:\{H  \mvdash{}  \_\}.    (H  \mvdash{}  CompOp(A)  {}\mRightarrow{}  H  \mvdash{}  CompOp(E)  {}\mRightarrow{}  H  \mvdash{}  CompOp(Equiv(A;E)))
Date html generated:
2020_05_20-PM-07_20_33
Last ObjectModification:
2020_04_25-PM-09_50_34
Theory : cubical!type!theory
Home
Index