Nuprl Lemma : face-type-sq
𝔽 ~ <λI,alpha. Point(face_lattice(I)), λI,J,f,alpha,w. (w)<f>>
Proof
Definitions occuring in Statement : 
face-type: 𝔽
, 
fl-morph: <f>
, 
face_lattice: face_lattice(I)
, 
lattice-point: Point(l)
, 
apply: f a
, 
lambda: λx.A[x]
, 
pair: <a, b>
, 
sqequal: s ~ t
Definitions unfolded in proof : 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
cube-set-restriction: f(s)
, 
pi2: snd(t)
, 
fl-morph: <f>
, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1)
, 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum
Lemmas referenced : 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity
Latex:
\mBbbF{}  \msim{}  <\mlambda{}I,alpha.  Point(face\_lattice(I)),  \mlambda{}I,J,f,alpha,w.  (w)<f>>
Date html generated:
2019_11_04-PM-05_37_07
Last ObjectModification:
2019_04_09-PM-03_09_59
Theory : cubical!type!theory
Home
Index