Nuprl Lemma : face-type-sq

𝔽 ~ <λI,alpha. Point(face_lattice(I)), λI,J,f,alpha,w. (w)<f>>


Proof




Definitions occuring in Statement :  face-type: 𝔽 fl-morph: <f> face_lattice: face_lattice(I) lattice-point: Point(l) apply: a lambda: λx.A[x] pair: <a, b> sqequal: t
Definitions unfolded in proof :  face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cube-set-restriction: f(s) pi2: snd(t) fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum
Lemmas referenced :  face-lattice-property free-dist-lattice-with-constraints-property
Rules used in proof :  sqequalSubstitution sqequalRule sqequalTransitivity computationStep sqequalReflexivity

Latex:
\mBbbF{}  \msim{}  <\mlambda{}I,alpha.  Point(face\_lattice(I)),  \mlambda{}I,J,f,alpha,w.  (w)<f>>



Date html generated: 2019_11_04-PM-05_37_07
Last ObjectModification: 2019_04_09-PM-03_09_59

Theory : cubical!type!theory


Home Index