Nuprl Lemma : formal-cube-is-rep-pre-sheaf

[I:Top]. (formal-cube(I) rep-pre-sheaf(CubeCat;I))


Proof




Definitions occuring in Statement :  formal-cube: formal-cube(I) cube-cat: CubeCat rep-pre-sheaf: rep-pre-sheaf(C;X) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top formal-cube: formal-cube(I) Yoneda: Yoneda(I) cube-cat: CubeCat all: x:A. B[x]
Lemmas referenced :  Yoneda-is-rep-pre-sheaf cat_arrow_triple_lemma cat_comp_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin isect_memberEquality voidElimination voidEquality sqequalRule dependent_functionElimination hypothesis

Latex:
\mforall{}[I:Top].  (formal-cube(I)  \msim{}  rep-pre-sheaf(CubeCat;I))



Date html generated: 2018_05_23-AM-08_33_40
Last ObjectModification: 2018_05_20-PM-05_46_38

Theory : cubical!type!theory


Home Index