Nuprl Lemma : nc-0-as-nc-p
∀[I:fset(ℕ)]. ∀[i:ℕ]. ((i0) ~ (i/0))
Proof
Definitions occuring in Statement :
nc-0: (i0)
,
nc-p: (i/z)
,
dM0: 0
,
fset: fset(T)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nc-p: (i/z)
,
nc-0: (i0)
,
top: Top
Lemmas referenced :
fset_wf,
nat_wf,
dM0-sq-empty
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
sqequalAxiom,
sqequalRule,
hypothesisEquality,
because_Cache
Latex:
\mforall{}[I:fset(\mBbbN{})]. \mforall{}[i:\mBbbN{}]. ((i0) \msim{} (i/0))
Date html generated:
2016_05_18-PM-00_00_57
Last ObjectModification:
2016_02_05-PM-00_48_50
Theory : cubical!type!theory
Home
Index