Nuprl Lemma : nc-0-as-nc-p

[I:fset(ℕ)]. ∀[i:ℕ].  ((i0) (i/0))


Proof




Definitions occuring in Statement :  nc-0: (i0) nc-p: (i/z) dM0: 0 fset: fset(T) nat: uall: [x:A]. B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nc-p: (i/z) nc-0: (i0) top: Top
Lemmas referenced :  fset_wf nat_wf dM0-sq-empty
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom sqequalRule hypothesisEquality because_Cache

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    ((i0)  \msim{}  (i/0))



Date html generated: 2016_05_18-PM-00_00_57
Last ObjectModification: 2016_02_05-PM-00_48_50

Theory : cubical!type!theory


Home Index