Nuprl Lemma : nc-0-as-nc-p
∀[I:fset(ℕ)]. ∀[i:ℕ].  ((i0) ~ (i/0))
Proof
Definitions occuring in Statement : 
nc-0: (i0)
, 
nc-p: (i/z)
, 
dM0: 0
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nc-p: (i/z)
, 
nc-0: (i0)
, 
top: Top
Lemmas referenced : 
fset_wf, 
nat_wf, 
dM0-sq-empty
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
sqequalRule, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    ((i0)  \msim{}  (i/0))
Date html generated:
2016_05_18-PM-00_00_57
Last ObjectModification:
2016_02_05-PM-00_48_50
Theory : cubical!type!theory
Home
Index