Nuprl Lemma : nc-1-s-commute
∀[I:fset(ℕ)]. ∀[i,j:ℕ].  ((i1) ⋅ s = s ⋅ (i1) ∈ I+j ⟶ I+i)
Proof
Definitions occuring in Statement : 
nc-1: (i1)
, 
nc-s: s
, 
add-name: I+i
, 
nh-comp: g ⋅ f
, 
names-hom: I ⟶ J
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
fset_wf, 
nat_wf, 
nc-1-as-nc-p, 
nc-p-s-commute
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
sqequalRule
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i,j:\mBbbN{}].    ((i1)  \mcdot{}  s  =  s  \mcdot{}  (i1))
Date html generated:
2016_05_18-PM-00_05_14
Last ObjectModification:
2016_02_08-PM-03_09_47
Theory : cubical!type!theory
Home
Index