Nuprl Lemma : nc-p-s-commute

[I:fset(ℕ)]. ∀[i,j:ℕ]. ∀[z:Point(dM(I))].  ((i/z) ⋅ s ⋅ (i/z) ∈ I+j ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-p: (i/z) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J dM: dM(I) lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T names-hom: I ⟶ J nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) nc-p: (i/z) nc-s: s subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q names: names(I) nat: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] so_apply: x[s] dM_inc: <x> dminc: <i> free-dl-inc: free-dl-inc(x) fset-singleton: {x} cons: [a b] nequal: a ≠ b ∈  ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  nc-p_wf add-name_wf dM-point-subtype f-subset-add-name equal_wf squash_wf true_wf names-hom_wf add-name-com subtype_rel_self iff_weakening_equal eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int names_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf nat_wf dM-lift-is-id2 f-subset_weakening int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self f-subset_wf nc-s_wf dM_inc_wf names-subtype nat_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf dM-lift-inc not-added-name
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality independent_isectElimination dependent_functionElimination instantiate lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality because_Cache natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination hyp_replacement setElimination rename lambdaFormation unionElimination equalityElimination dependent_pairFormation promote_hyp cumulativity voidElimination productEquality isect_memberEquality axiomEquality dependent_set_memberEquality intEquality approximateComputation int_eqEquality voidEquality independent_pairFormation

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i,j:\mBbbN{}].  \mforall{}[z:Point(dM(I))].    ((i/z)  \mcdot{}  s  =  s  \mcdot{}  (i/z))



Date html generated: 2018_05_23-AM-08_30_34
Last ObjectModification: 2018_05_20-PM-05_44_06

Theory : cubical!type!theory


Home Index