Nuprl Lemma : path-type-subset-adjoin
∀[X,T,A,w,a,phi:Top].  ((X, phi.T ⊢ Path_A a w) ~ (X.T ⊢ Path_A a w))
Proof
Definitions occuring in Statement : 
path-type: (Path_A a b)
, 
context-subset: Gamma, phi
, 
cube-context-adjoin: X.A
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
path-type: (Path_A a b)
, 
cubical-subset: {t:T | ∀I,alpha. psi[I; alpha; t]}
, 
pathtype: Path(A)
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
cubical-fun-subset-adjoin, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
because_Cache
Latex:
\mforall{}[X,T,A,w,a,phi:Top].    ((X,  phi.T  \mvdash{}  Path\_A  a  w)  \msim{}  (X.T  \mvdash{}  Path\_A  a  w))
Date html generated:
2018_05_23-AM-09_34_11
Last ObjectModification:
2018_05_20-PM-06_36_13
Theory : cubical!type!theory
Home
Index