Nuprl Lemma : path-type-subset-adjoin

[X,T,A,w,a,phi:Top].  ((X, phi.T ⊢ Path_A w) (X.T ⊢ Path_A w))


Proof




Definitions occuring in Statement :  path-type: (Path_A b) context-subset: Gamma, phi cube-context-adjoin: X.A uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] path-type: (Path_A b) cubical-subset: {t:T | ∀I,alpha. psi[I; alpha; t]} pathtype: Path(A) member: t ∈ T top: Top
Lemmas referenced :  cubical-fun-subset-adjoin top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality hypothesis because_Cache

Latex:
\mforall{}[X,T,A,w,a,phi:Top].    ((X,  phi.T  \mvdash{}  Path\_A  a  w)  \msim{}  (X.T  \mvdash{}  Path\_A  a  w))



Date html generated: 2018_05_23-AM-09_34_11
Last ObjectModification: 2018_05_20-PM-06_36_13

Theory : cubical!type!theory


Home Index