Nuprl Lemma : sigma-comp-exists

Gamma:j⊢. ∀A:{Gamma ⊢ _}. ∀B:{Gamma.A ⊢ _}.  (Gamma ⊢ CompOp(A)  Gamma.A ⊢ CompOp(B)  Gamma ⊢ CompOp(Σ B))


Proof




Definitions occuring in Statement :  composition-op: Gamma ⊢ CompOp(A) cubical-sigma: Σ B cube-context-adjoin: X.A cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B
Lemmas referenced :  sigmacomp_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cube-context-adjoin_wf composition-op_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt rename introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule universeIsType

Latex:
\mforall{}Gamma:j\mvdash{}.  \mforall{}A:\{Gamma  \mvdash{}  \_\}.  \mforall{}B:\{Gamma.A  \mvdash{}  \_\}.
    (Gamma  \mvdash{}  CompOp(A)  {}\mRightarrow{}  Gamma.A  \mvdash{}  CompOp(B)  {}\mRightarrow{}  Gamma  \mvdash{}  CompOp(\mSigma{}  A  B))



Date html generated: 2020_05_20-PM-04_06_32
Last ObjectModification: 2020_04_10-AM-03_42_27

Theory : cubical!type!theory


Home Index