Nuprl Lemma : sigma-unelim-csm_wf
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}].  (SigmaUnElim ∈ X.A.B ij⟶ X.Σ A B)
Proof
Definitions occuring in Statement : 
sigma-unelim-csm: SigmaUnElim
, 
cubical-sigma: Σ A B
, 
cube-context-adjoin: X.A
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
cube-context-adjoin: X.A
, 
psc-adjoin: X.A
, 
I_cube: A(I)
, 
I_set: A(I)
, 
cubical-type-at: A(a)
, 
presheaf-type-at: A(a)
, 
cube-set-restriction: f(s)
, 
psc-restriction: f(s)
, 
cubical-type-ap-morph: (u a f)
, 
presheaf-type-ap-morph: (u a f)
, 
cube_set_map: A ⟶ B
, 
cubical-sigma: Σ A B
, 
presheaf-sigma: Σ A B
, 
cc-adjoin-cube: (v;u)
, 
psc-adjoin-set: (v;u)
, 
sigma-unelim-csm: SigmaUnElim
, 
sigma-unelim-pscm: SigmaUnElim
Lemmas referenced : 
sigma-unelim-pscm_wf, 
cube-cat_wf, 
cubical-type-sq-presheaf-type
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].    (SigmaUnElim  \mmember{}  X.A.B  ij{}\mrightarrow{}  X.\mSigma{}  A  B)
Date html generated:
2020_05_20-PM-02_27_54
Last ObjectModification:
2020_04_04-AM-09_26_20
Theory : cubical!type!theory
Home
Index