Nuprl Lemma : sigma-unelim-pscm_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}].
  (SigmaUnElim ∈ psc_map{[i j]:l}(C; X.A.B; X.Σ B))


Proof




Definitions occuring in Statement :  sigma-unelim-pscm: SigmaUnElim presheaf-sigma: Σ B psc-adjoin: X.A presheaf-type: {X ⊢ _} psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B psc-adjoin: X.A all: x:A. B[x] sigma-unelim-pscm: SigmaUnElim psc-restriction: f(s) pi2: snd(t) pi1: fst(t) squash: T true: True psc-adjoin-set: (v;u) presheaf-sigma: Σ B I_set: A(I) functor-ob: ob(F)
Lemmas referenced :  psc-map-is psc-adjoin_wf ps_context_cumulativity2 presheaf-type-cumulativity2 presheaf-sigma_wf I_set_pair_redex_lemma psc-adjoin-set_wf I_set_wf cat-ob_wf psc-adjoin-set-restriction psc-restriction_wf cat-arrow_wf presheaf-type_wf small-category-cumulativity-2 ps_context_wf small-category_wf presheaf_type_at_pair_lemma presheaf-type-at_wf presheaf_type_ap_morph_pair_lemma presheaf-type-ap-morph_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis dependent_set_memberEquality_alt functionExtensionality dependent_functionElimination Error :memTop,  productElimination lambdaFormation_alt lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed universeIsType inhabitedIsType functionIsType equalityIstype axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies dependent_pairEquality_alt

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].
    (SigmaUnElim  \mmember{}  psc\_map\{[i  |  j]:l\}(C;  X.A.B;  X.\mSigma{}  A  B))



Date html generated: 2020_05_20-PM-01_32_37
Last ObjectModification: 2020_04_02-PM-06_41_24

Theory : presheaf!models!of!type!theory


Home Index