Nuprl Lemma : term-context-subset-subtype

[Gamma:j⊢]. ∀[phi1,phi2:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma ⊢ _}].
  {Gamma, phi1 ⊢ _:A} ⊆{Gamma, phi2 ⊢ _:A} supposing Gamma ⊢ (phi2  phi1)


Proof




Definitions occuring in Statement :  face-term-implies: Gamma ⊢ (phi  psi) context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T prop:
Lemmas referenced :  subset-cubical-term context-subset_wf face-term-implies-subset thin-context-subset face-term-implies_wf cubical-type_wf cubical-term_wf face-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination universeIsType instantiate because_Cache

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi1,phi2:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].
    \{Gamma,  phi1  \mvdash{}  \_:A\}  \msubseteq{}r  \{Gamma,  phi2  \mvdash{}  \_:A\}  supposing  Gamma  \mvdash{}  (phi2  {}\mRightarrow{}  phi1)



Date html generated: 2020_05_20-PM-02_55_12
Last ObjectModification: 2020_04_06-AM-10_31_35

Theory : cubical!type!theory


Home Index