Nuprl Lemma : term-context-subset-subtype
∀[Gamma:j⊢]. ∀[phi1,phi2:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma ⊢ _}].
  {Gamma, phi1 ⊢ _:A} ⊆r {Gamma, phi2 ⊢ _:A} supposing Gamma ⊢ (phi2 
⇒ phi1)
Proof
Definitions occuring in Statement : 
face-term-implies: Gamma ⊢ (phi 
⇒ psi)
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
subset-cubical-term, 
context-subset_wf, 
face-term-implies-subset, 
thin-context-subset, 
face-term-implies_wf, 
cubical-type_wf, 
cubical-term_wf, 
face-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
universeIsType, 
instantiate, 
because_Cache
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi1,phi2:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].
    \{Gamma,  phi1  \mvdash{}  \_:A\}  \msubseteq{}r  \{Gamma,  phi2  \mvdash{}  \_:A\}  supposing  Gamma  \mvdash{}  (phi2  {}\mRightarrow{}  phi1)
Date html generated:
2020_05_20-PM-02_55_12
Last ObjectModification:
2020_04_06-AM-10_31_35
Theory : cubical!type!theory
Home
Index