Nuprl Lemma : univ-a_wf2
∀[G:j⊢]. (UA ∈ {G.c𝕌.c𝕌 ⊢ _:(Equiv(decode(q);decode((q)p)) ⟶ (Path_c𝕌 q (q)p))})
Proof
Definitions occuring in Statement : 
univ-a: UA
, 
universe-decode: decode(t)
, 
cubical-universe: c𝕌
, 
cubical-equiv: Equiv(T;A)
, 
path-type: (Path_A a b)
, 
cubical-fun: (A ⟶ B)
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
cc-snd_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
cubical-universe_wf, 
cubical-type-cumulativity2, 
csm-cubical-universe, 
csm-ap-term_wf, 
cc-fst_wf, 
univ-a_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType
Latex:
\mforall{}[G:j\mvdash{}].  (UA  \mmember{}  \{G.c\mBbbU{}.c\mBbbU{}  \mvdash{}  \_:(Equiv(decode(q);decode((q)p))  {}\mrightarrow{}  (Path\_c\mBbbU{}  q  (q)p))\})
Date html generated:
2020_05_20-PM-07_31_02
Last ObjectModification:
2020_04_28-PM-11_17_32
Theory : cubical!type!theory
Home
Index