Nuprl Lemma : univ-a_wf2

[G:j⊢]. (UA ∈ {G.c𝕌.c𝕌 ⊢ _:(Equiv(decode(q);decode((q)p)) ⟶ (Path_c𝕌 (q)p))})


Proof




Definitions occuring in Statement :  univ-a: UA universe-decode: decode(t) cubical-universe: c𝕌 cubical-equiv: Equiv(T;A) path-type: (Path_A b) cubical-fun: (A ⟶ B) cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  cc-snd_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-universe_wf cubical-type-cumulativity2 csm-cubical-universe csm-ap-term_wf cc-fst_wf univ-a_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache Error :memTop,  equalityTransitivity equalitySymmetry universeIsType

Latex:
\mforall{}[G:j\mvdash{}].  (UA  \mmember{}  \{G.c\mBbbU{}.c\mBbbU{}  \mvdash{}  \_:(Equiv(decode(q);decode((q)p))  {}\mrightarrow{}  (Path\_c\mBbbU{}  q  (q)p))\})



Date html generated: 2020_05_20-PM-07_31_02
Last ObjectModification: 2020_04_28-PM-11_17_32

Theory : cubical!type!theory


Home Index