Step * 1 1 1 2 1 1 of Lemma eu-be-end-eq


1. EuclideanPlane@i'
2. Point@i
3. Point@i
4. Point@i
5. a_b_c@i
6. ab=ac@i
7. |ac| |ab| |bc| ∈ {p:Point| O_X_p} 
8. |ac| |ac| |bc| ∈ {p:Point| O_X_p} 
9. |ab| |ac| ∈ {p:Point| O_X_p} 
10. ab=ac
11. |ac| |ac| |bc| ∈ {p:Point| O_X_p} 
12. |bc| ∈ {p:Point| O_X_p} 
13. |aa| |bc| ∈ {p:Point| O_X_p} 
⊢ c ∈ Point
BY
(InstLemma `eu-congruent-iff-length` [⌜e⌝;⌜a⌝;⌜a⌝;⌜b⌝;⌜c⌝]⋅ THENA Auto) }

1
1. EuclideanPlane@i'
2. Point@i
3. Point@i
4. Point@i
5. a_b_c@i
6. ab=ac@i
7. |ac| |ab| |bc| ∈ {p:Point| O_X_p} 
8. |ac| |ac| |bc| ∈ {p:Point| O_X_p} 
9. |ab| |ac| ∈ {p:Point| O_X_p} 
10. ab=ac
11. |ac| |ac| |bc| ∈ {p:Point| O_X_p} 
12. |bc| ∈ {p:Point| O_X_p} 
13. |aa| |bc| ∈ {p:Point| O_X_p} 
14. uiff(aa=bc;|aa| |bc| ∈ {p:Point| O_X_p} )
⊢ c ∈ Point


Latex:


Latex:

1.  e  :  EuclideanPlane@i'
2.  a  :  Point@i
3.  b  :  Point@i
4.  c  :  Point@i
5.  a\_b\_c@i
6.  ab=ac@i
7.  |ac|  =  |ab|  +  |bc|
8.  |ac|  =  |ac|  +  |bc|
9.  |ab|  =  |ac|
10.  ab=ac
11.  |ac|  +  X  =  |ac|  +  |bc|
12.  X  =  |bc|
13.  |aa|  =  |bc|
\mvdash{}  b  =  c


By


Latex:
(InstLemma  `eu-congruent-iff-length`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{}  THENA  Auto)




Home Index