Nuprl Lemma : eu-between-same2
∀[e:EuclideanPlane]. ∀[a,b:Point].  False supposing a-b-a
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between: a-b-c
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
false: False
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
false: False
, 
euclidean-plane: EuclideanPlane
, 
euclidean-axioms: euclidean-axioms(e)
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
not: ¬A
, 
implies: P 
⇒ Q
Lemmas referenced : 
eu-between_wf, 
eu-point_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
hypothesis, 
sqequalRule, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
independent_functionElimination
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b:Point].    False  supposing  a-b-a
Date html generated:
2016_05_18-AM-06_34_15
Last ObjectModification:
2015_12_28-AM-09_27_56
Theory : euclidean!geometry
Home
Index