Nuprl Lemma : eu-between-trans

e:EuclideanPlane. ∀[a,b,c,d:Point].  (a-b-c) supposing (b-c-d and a-b-d)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between: a-b-c eu-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a euclidean-plane: EuclideanPlane member: t ∈ T sq_stable: SqStable(P) implies:  Q euclidean-axioms: euclidean-axioms(e) and: P ∧ Q squash: T prop: guard: {T}
Lemmas referenced :  euclidean-plane_wf eu-point_wf eu-between_wf sq_stable__eu-between
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution setElimination thin rename cut lemma_by_obid dependent_functionElimination hypothesisEquality isectElimination hypothesis independent_functionElimination introduction productElimination sqequalRule imageMemberEquality baseClosed imageElimination independent_isectElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d:Point].    (a-b-c)  supposing  (b-c-d  and  a-b-d)



Date html generated: 2016_05_18-AM-06_33_47
Last ObjectModification: 2016_01_16-PM-10_31_46

Theory : euclidean!geometry


Home Index